-
Previous Article
Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $
- DCDS Home
- This Issue
-
Next Article
Singular solutions of a Lane-Emden system
Uniform stability estimate for the Vlasov-Poisson-Boltzmann system
School of Science, Wuhan Institute of Technology, Wuhan, 430072, China, School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China |
This paper is concerned with the uniform stability estimate to the Cauchy problem of the Vlasov-Poisson-Boltzmann system. Our analysis is based on compensating function introduced by Kawashima and the standard energy method.
References:
[1] |
R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65. Academic Press, New York-London, 1975.
![]() ![]() |
[2] |
C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer, New York, 1994.
doi: 10.1007/978-1-4419-8524-8. |
[3] |
L. Desvillettes and J. Dolbeault,
On long time asymptotics of the Vlasov-Poisson-Boltzmann equation, Comm. Partial Differ. Eqs., 16 (1991), 451-489.
doi: 10.1080/03605309108820765. |
[4] |
R. Duan and R. M. Strain,
Optimal time decay of the Vlasov-Poisson-Boltzmann system in $\mathbb{R}^ 3$., Arch. Ration. Mech. Anal., 199 (2011), 291-328.
doi: 10.1007/s00205-010-0318-6. |
[5] |
R. Duan and T. Yang,
Stability of the one-species Vlasov-Poisson-Boltzmann system, SIAM J. Math. Anal., 41 (2010), 2353-2387.
doi: 10.1137/090745775. |
[6] |
R. Duan, T. Yang and H. Zhao,
The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case, J. Diff. Eqs., 252 (2012), 6356-6386.
doi: 10.1016/j.jde.2012.03.012. |
[7] |
R. Duan, T. Yang and C. Zhu,
Boltzmann equation with external force and Vlasov-Poisson-Boltzmann system in infinite vacuum, Discrete Contin. Dyn. Syst., 16 (2006), 253-277.
doi: 10.3934/dcds.2006.16.253. |
[8] |
R. Duan and S. Liu,
The Vlasov-Poisson-Boltzmann system without angular cutoff, Comm. Math. Phys., 324 (2013), 1-45.
doi: 10.1007/s00220-013-1807-x. |
[9] |
R. Duan, T. Yang and H. Zhao,
The Vlasov-Poisson-Boltzmann system for soft potentials, Math. Models Meth. Appl. Sci., 23 (2013), 979-1028.
doi: 10.1142/S0218202513500012. |
[10] |
R. T. Glassey, The Cauchy Problem in Kinetic Theory, Philadelphia, PA, SIAM, 1996.
doi: 10.1137/1.9781611971477. |
[11] |
R. T. Glassey and W. A. Strauss,
Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system, Discrete Contin. Dynam. Systems-A, 5 (1999), 457-472.
doi: 10.3934/dcds.1999.5.457. |
[12] |
Y. Guo,
The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math., 55 (2002), 1104-1135.
doi: 10.1002/cpa.10040. |
[13] |
Y. Guo,
The Boltzmann equation in the whole space, Indiana Univ. Math. J., 53 (2004), 1081-1094.
doi: 10.1512/iumj.2004.53.2574. |
[14] |
Y. Guo,
Boltzmann diffusive limit beyond the Navier-Stokes approximation, Comm. Pure Appl. Math., 59 (2006), 626-687.
doi: 10.1002/cpa.20121. |
[15] |
Y. Guo and J. Jang,
Global Hilbert expansion for the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 299 (2010), 469-501.
doi: 10.1007/s00220-010-1089-5. |
[16] |
S. Kawashima,
The Boltzmann equation and thirteen moments, Japan J. Appl. Math., 7 (1990), 301-320.
doi: 10.1007/BF03167846. |
[17] |
P.-L. Lions, On kinetic equations, In Proceedings of International Congress of Mathematician, Vol. Ⅰ, Ⅱ (Kyoto, 1990), 1173–1185, Math. Soc. Japan, Tokyo, 1991. |
[18] |
S. Mischler,
On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 210 (2000), 447-466.
doi: 10.1007/s002200050787. |
[19] |
X. Wang and H. Shi,
Decay and stability of solutions to the Fokker-Planck-Boltzmann equation in $\mathbb{R}^3$, Appl. Anal., 97 (2018), 1933-1959.
doi: 10.1080/00036811.2017.1344225. |
[20] |
T. Yang, H. Yu and H. Zhao,
Cauchy problem for the Vlasov-Poisson-Boltzmann system, Arch. Rat. Mech. Anal., 182 (2006), 415-470.
doi: 10.1007/s00205-006-0009-5. |
[21] |
T. Yang and H. Yu,
Optimal convergence rates of classical so lutions for Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 301 (2011), 319-355.
doi: 10.1007/s00220-010-1142-4. |
[22] |
T. Yang and H. Zhao,
Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 268 (2006), 569-605.
doi: 10.1007/s00220-006-0103-4. |
show all references
References:
[1] |
R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65. Academic Press, New York-London, 1975.
![]() ![]() |
[2] |
C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer, New York, 1994.
doi: 10.1007/978-1-4419-8524-8. |
[3] |
L. Desvillettes and J. Dolbeault,
On long time asymptotics of the Vlasov-Poisson-Boltzmann equation, Comm. Partial Differ. Eqs., 16 (1991), 451-489.
doi: 10.1080/03605309108820765. |
[4] |
R. Duan and R. M. Strain,
Optimal time decay of the Vlasov-Poisson-Boltzmann system in $\mathbb{R}^ 3$., Arch. Ration. Mech. Anal., 199 (2011), 291-328.
doi: 10.1007/s00205-010-0318-6. |
[5] |
R. Duan and T. Yang,
Stability of the one-species Vlasov-Poisson-Boltzmann system, SIAM J. Math. Anal., 41 (2010), 2353-2387.
doi: 10.1137/090745775. |
[6] |
R. Duan, T. Yang and H. Zhao,
The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case, J. Diff. Eqs., 252 (2012), 6356-6386.
doi: 10.1016/j.jde.2012.03.012. |
[7] |
R. Duan, T. Yang and C. Zhu,
Boltzmann equation with external force and Vlasov-Poisson-Boltzmann system in infinite vacuum, Discrete Contin. Dyn. Syst., 16 (2006), 253-277.
doi: 10.3934/dcds.2006.16.253. |
[8] |
R. Duan and S. Liu,
The Vlasov-Poisson-Boltzmann system without angular cutoff, Comm. Math. Phys., 324 (2013), 1-45.
doi: 10.1007/s00220-013-1807-x. |
[9] |
R. Duan, T. Yang and H. Zhao,
The Vlasov-Poisson-Boltzmann system for soft potentials, Math. Models Meth. Appl. Sci., 23 (2013), 979-1028.
doi: 10.1142/S0218202513500012. |
[10] |
R. T. Glassey, The Cauchy Problem in Kinetic Theory, Philadelphia, PA, SIAM, 1996.
doi: 10.1137/1.9781611971477. |
[11] |
R. T. Glassey and W. A. Strauss,
Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system, Discrete Contin. Dynam. Systems-A, 5 (1999), 457-472.
doi: 10.3934/dcds.1999.5.457. |
[12] |
Y. Guo,
The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math., 55 (2002), 1104-1135.
doi: 10.1002/cpa.10040. |
[13] |
Y. Guo,
The Boltzmann equation in the whole space, Indiana Univ. Math. J., 53 (2004), 1081-1094.
doi: 10.1512/iumj.2004.53.2574. |
[14] |
Y. Guo,
Boltzmann diffusive limit beyond the Navier-Stokes approximation, Comm. Pure Appl. Math., 59 (2006), 626-687.
doi: 10.1002/cpa.20121. |
[15] |
Y. Guo and J. Jang,
Global Hilbert expansion for the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 299 (2010), 469-501.
doi: 10.1007/s00220-010-1089-5. |
[16] |
S. Kawashima,
The Boltzmann equation and thirteen moments, Japan J. Appl. Math., 7 (1990), 301-320.
doi: 10.1007/BF03167846. |
[17] |
P.-L. Lions, On kinetic equations, In Proceedings of International Congress of Mathematician, Vol. Ⅰ, Ⅱ (Kyoto, 1990), 1173–1185, Math. Soc. Japan, Tokyo, 1991. |
[18] |
S. Mischler,
On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 210 (2000), 447-466.
doi: 10.1007/s002200050787. |
[19] |
X. Wang and H. Shi,
Decay and stability of solutions to the Fokker-Planck-Boltzmann equation in $\mathbb{R}^3$, Appl. Anal., 97 (2018), 1933-1959.
doi: 10.1080/00036811.2017.1344225. |
[20] |
T. Yang, H. Yu and H. Zhao,
Cauchy problem for the Vlasov-Poisson-Boltzmann system, Arch. Rat. Mech. Anal., 182 (2006), 415-470.
doi: 10.1007/s00205-006-0009-5. |
[21] |
T. Yang and H. Yu,
Optimal convergence rates of classical so lutions for Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 301 (2011), 319-355.
doi: 10.1007/s00220-010-1142-4. |
[22] |
T. Yang and H. Zhao,
Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 268 (2006), 569-605.
doi: 10.1007/s00220-006-0103-4. |
[1] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic and Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003 |
[2] |
Robert T. Glassey, Walter A. Strauss. Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 457-472. doi: 10.3934/dcds.1999.5.457 |
[3] |
Renjun Duan, Tong Yang, Changjiang Zhu. Boltzmann equation with external force and Vlasov-Poisson-Boltzmann system in infinite vacuum. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 253-277. doi: 10.3934/dcds.2006.16.253 |
[4] |
Zhendong Fang, Hao Wang. Convergence from two-species Vlasov-Poisson-Boltzmann system to two-fluid incompressible Navier-Stokes-Fourier-Poisson system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4347-4386. doi: 10.3934/dcdsb.2021231 |
[5] |
Laurent Bernis, Laurent Desvillettes. Propagation of singularities for classical solutions of the Vlasov-Poisson-Boltzmann equation. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 13-33. doi: 10.3934/dcds.2009.24.13 |
[6] |
Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic and Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052 |
[7] |
Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361 |
[8] |
Giuseppe Floridia, Hiroshi Takase, Masahiro Yamamoto. A Carleman estimate and an energy method for a first-order symmetric hyperbolic system. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022016 |
[9] |
Renjun Duan, Shuangqian Liu, Tong Yang, Huijiang Zhao. Stability of the nonrelativistic Vlasov-Maxwell-Boltzmann system for angular non-cutoff potentials. Kinetic and Related Models, 2013, 6 (1) : 159-204. doi: 10.3934/krm.2013.6.159 |
[10] |
Katherine Zhiyuan Zhang. Focusing solutions of the Vlasov-Poisson system. Kinetic and Related Models, 2019, 12 (6) : 1313-1327. doi: 10.3934/krm.2019051 |
[11] |
Yuhua Zhu. A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks and Heterogeneous Media, 2019, 14 (4) : 677-707. doi: 10.3934/nhm.2019027 |
[12] |
Raffaele Esposito, Yan Guo, Rossana Marra. Stability of a Vlasov-Boltzmann binary mixture at the phase transition on an interval. Kinetic and Related Models, 2013, 6 (4) : 761-787. doi: 10.3934/krm.2013.6.761 |
[13] |
Tohru Nakamura, Shinya Nishibata. Energy estimate for a linear symmetric hyperbolic-parabolic system in half line. Kinetic and Related Models, 2013, 6 (4) : 883-892. doi: 10.3934/krm.2013.6.883 |
[14] |
Shuangqian Liu, Qinghua Xiao. The relativistic Vlasov-Maxwell-Boltzmann system for short range interaction. Kinetic and Related Models, 2016, 9 (3) : 515-550. doi: 10.3934/krm.2016005 |
[15] |
Dayton Preissl, Christophe Cheverry, Slim Ibrahim. Uniform lifetime for classical solutions to the Hot, Magnetized, Relativistic Vlasov Maxwell system. Kinetic and Related Models, 2021, 14 (6) : 1035-1079. doi: 10.3934/krm.2021042 |
[16] |
Zhigang Wu, Wenjun Wang. Uniform stability of the Boltzmann equation with an external force near vacuum. Communications on Pure and Applied Analysis, 2015, 14 (3) : 811-823. doi: 10.3934/cpaa.2015.14.811 |
[17] |
Seung-Yeal Ha, Eunhee Jeong, Robert M. Strain. Uniform $L^1$-stability of the relativistic Boltzmann equation near vacuum. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1141-1161. doi: 10.3934/cpaa.2013.12.1141 |
[18] |
Mihaï Bostan. Asymptotic behavior for the Vlasov-Poisson equations with strong uniform magnetic field and general initial conditions. Kinetic and Related Models, 2020, 13 (3) : 531-548. doi: 10.3934/krm.2020018 |
[19] |
Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic and Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955 |
[20] |
Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure and Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]