February  2021, 41(2): 701-746. doi: 10.3934/dcds.2020298

Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case

Univ. Sorbonne Paris Nord, Institut Galilée, LAGA, UMR 7539, 99 Avenue Jean Baptiste Clément, 93430 Villetaneuse, France

Received  March 2019 Revised  June 2020 Published  August 2020

We consider the focusing $ L^2 $-supercritical Schrödinger equation in the exterior of a smooth, compact, strictly convex obstacle $ \Theta \subset \mathbb{R}^3 $. We construct a solution behaving asymptotically as a solitary wave on $ \mathbb{R}^3, $ for large times. When the velocity of the solitary wave is high, the existence of such a solution can be proved by a classical fixed point argument. To construct solutions with arbitrary nonzero velocity, we use a compactness argument similar to the one that was introduced by F.Merle in 1990 to construct solutions of the NLS equation blowing up at several points together with a topological argument using Brouwer's theorem to control the unstable direction of the linearized operator at the soliton. These solutions are arbitrarily close to the scattering threshold given by a previous work of R. Killip, M. Visan and X. Zhang, which is the same as the one on the whole Euclidean space given by S. Roundenko and J. Holmer in the radial case and by the previous authors with T. Duyckaerts in the non-radial case.

Citation: Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298
References:
[1]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82 (1983), 347-375.  doi: 10.1007/BF00250556.  Google Scholar

[2]

M. D. BlairH. F. Smith and C. D. Sogge, Strichartz estimates and the nonlinear Schrödinger equation on manifolds with boundary, Math. Ann., 354 (2012), 1397-1430.  doi: 10.1007/s00208-011-0772-y.  Google Scholar

[3]

N. BurqP. Gérard and N. Tzvetkov, Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Geom. Funct. Anal., 13 (2003), 1-19.  doi: 10.1007/s000390300000.  Google Scholar

[4]

N. BurqP. Gérard and N. Tzvetkov, On nonlinear Schrödinger equations in exterior domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 295-318.  doi: 10.1016/j.anihpc.2003.03.002.  Google Scholar

[5]

T. Cazenave, Semilinear Schrödinger Equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University Courant Institute of Mathematical Sciences, New York, 2003. doi: 10.1090/cln/010.  Google Scholar

[6]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.  doi: 10.1007/BF01403504.  Google Scholar

[7]

V. Combet, Multi-existence of multi-solitons for the supercritical nonlinear Schrödinger equation in one dimension, Discrete Contin. Dyn. Syst., 34 (2014), 1961-1993.  doi: 10.3934/dcds.2014.34.1961.  Google Scholar

[8]

R. CôteY. Martel and F. Merle, Construction of multi-soliton solutions for the $L^2$-supercritical gKdV and NLS equations, Rev. Mat. Iberoam., 27 (2011), 273-302.  doi: 10.4171/RMI/636.  Google Scholar

[9]

T. DuyckaertsJ. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250.  doi: 10.4310/MRL.2008.v15.n6.a13.  Google Scholar

[10]

T. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. Anal., 18 (2009), 1787-1840.  doi: 10.1007/s00039-009-0707-x.  Google Scholar

[11]

T. Duyckaerts and S. Roudenko, Threshold solutions for the focusing 3d cubic Schrödinger equation., Rev. Mat. Iberoam., 26 (2010), 1-56.  doi: 10.4171/RMI/592.  Google Scholar

[12]

D. FangJ. Xie and T. Cazenave, Scattering for the focusing energy-subcritical nonlinear Schrödinger equation, Sci. China Math., 54 (2011), 2037-2062.  doi: 10.1007/s11425-011-4283-9.  Google Scholar

[13]

N. Godet, Blow-up in several points for the nonlinear Schrödinger equation on a bounded domain, Differential Integral Equations, 24 (2011), 505-517.   Google Scholar

[14]

M. Grillakis, Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system, Comm. Pure Appl. Math., 43 (1990), 299-333.  doi: 10.1002/cpa.3160430302.  Google Scholar

[15]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[16]

C. D. Guevara, Global behavior of finite energy solutions to the $d$-dimensional focusing nonlinear Schrödinger equation, Appl. Math. Res. Express. AMRX, 2014 (2014), 177-243.   Google Scholar

[17]

J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.  doi: 10.1007/s00220-008-0529-y.  Google Scholar

[18]

O. Ivanovici, On the Schrödinger equation outside strictly convex obstacles, Analysis and PDE, 3 (2010), 261-293.  doi: 10.2140/apde.2010.3.261.  Google Scholar

[19]

O. Ivanovici and G. Lebeau, Dispersion for the wave and the Schrödinger equations outside strictly convex obstacles and counterexamples, C. R. Math. Acad. Sci. Paris, 355 (2017), 774-779.  doi: 10.1016/j.crma.2017.05.011.  Google Scholar

[20]

O. Ivanovici and F. Planchon, On the energy critical Schrödinger equation in $3D$ non-trapping domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1153-1177.  doi: 10.1016/j.anihpc.2010.04.001.  Google Scholar

[21]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[22]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation., Acta Math., 201 (2008), 147-212.  doi: 10.1007/s11511-008-0031-6.  Google Scholar

[23]

R. KillipM. Visan and X. Zhang, Riesz transforms outside a convex obstacle, International Mathematics Research Notices, 2016 (2016), 5875-5921.  doi: 10.1093/imrn/rnv338.  Google Scholar

[24]

R. KillipM. Visan and X. Zhang, The focusing cubic NLS on exterior domains in three dimensions, Appl. Math. Res. Express. AMRX, 2016 (2016), 146-180.  doi: 10.1093/amrx/abv012.  Google Scholar

[25]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p = 0$ in ${\bf{R}}^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.  Google Scholar

[26]

D. Lafontaine, Strichartz estimates without loss outside two strictly convex obstacles, arXiv preprint, arXiv: 1709.03836, (2017). Google Scholar

[27]

D. Lafontaine, Strichartz estimates without loss outside many strictly convex obstacles, arXiv preprint, arXiv: 1811.12357, (2018). Google Scholar

[28]

D. LiH. Smith and X. Zhang, Global well-posedness and scattering for defocusing energy-critical NLS in the exterior of balls with radial data, Math. Res. Lett., 19 (2012), 213-232.  doi: 10.4310/MRL.2012.v19.n1.a17.  Google Scholar

[29]

Y. Martel and F. Merle, Multi solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 849-864.  doi: 10.1016/j.anihpc.2006.01.001.  Google Scholar

[30]

F. Merle, Construction of solutions with exactly $k$ blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys., 129 (1990), 223-240.  doi: 10.1007/BF02096981.  Google Scholar

[31]

F. Planchon and L. Vega, Bilinear virial identities and applications, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 261–290. doi: 10.24033/asens.2096.  Google Scholar

[32]

F. Planchon and L. Vega, Scattering for solutions of NLS in the exterior of a 2D star-shaped obstacle, Math. Res. Lett., 19 (2012), 887-897.  doi: 10.4310/MRL.2012.v19.n4.a12.  Google Scholar

[33]

W. Schlag, Spectral theory and nonlinear partial differential equations: A survey, Discrete Contin. Dyn. Syst., 15 (2006), 703-723.  doi: 10.3934/dcds.2006.15.703.  Google Scholar

[34]

F. A. Shakra, On 2D nonlinear Schrödinger equation on non-trapping exterior domains, Rev. Mat. Iberoam., 31 (2015), 657-680. Google Scholar

[35]

T. Tao, Nonlinear Dispersive Equations, vol. 106 of CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2006. Local and global analysis. doi: 10.1090/cbms/106.  Google Scholar

[36]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982/83), 567-576.   Google Scholar

[37]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.  doi: 10.1137/0516034.  Google Scholar

[38]

M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-67.  doi: 10.1002/cpa.3160390103.  Google Scholar

[39]

K. Yang, The focusing NLS on exterior domains in three dimensions, Commun. Pure Appl. Anal., 16 (2017), 2269-2297.  doi: 10.3934/cpaa.2017112.  Google Scholar

show all references

References:
[1]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal., 82 (1983), 347-375.  doi: 10.1007/BF00250556.  Google Scholar

[2]

M. D. BlairH. F. Smith and C. D. Sogge, Strichartz estimates and the nonlinear Schrödinger equation on manifolds with boundary, Math. Ann., 354 (2012), 1397-1430.  doi: 10.1007/s00208-011-0772-y.  Google Scholar

[3]

N. BurqP. Gérard and N. Tzvetkov, Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Geom. Funct. Anal., 13 (2003), 1-19.  doi: 10.1007/s000390300000.  Google Scholar

[4]

N. BurqP. Gérard and N. Tzvetkov, On nonlinear Schrödinger equations in exterior domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 295-318.  doi: 10.1016/j.anihpc.2003.03.002.  Google Scholar

[5]

T. Cazenave, Semilinear Schrödinger Equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University Courant Institute of Mathematical Sciences, New York, 2003. doi: 10.1090/cln/010.  Google Scholar

[6]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.  doi: 10.1007/BF01403504.  Google Scholar

[7]

V. Combet, Multi-existence of multi-solitons for the supercritical nonlinear Schrödinger equation in one dimension, Discrete Contin. Dyn. Syst., 34 (2014), 1961-1993.  doi: 10.3934/dcds.2014.34.1961.  Google Scholar

[8]

R. CôteY. Martel and F. Merle, Construction of multi-soliton solutions for the $L^2$-supercritical gKdV and NLS equations, Rev. Mat. Iberoam., 27 (2011), 273-302.  doi: 10.4171/RMI/636.  Google Scholar

[9]

T. DuyckaertsJ. Holmer and S. Roudenko, Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250.  doi: 10.4310/MRL.2008.v15.n6.a13.  Google Scholar

[10]

T. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. Anal., 18 (2009), 1787-1840.  doi: 10.1007/s00039-009-0707-x.  Google Scholar

[11]

T. Duyckaerts and S. Roudenko, Threshold solutions for the focusing 3d cubic Schrödinger equation., Rev. Mat. Iberoam., 26 (2010), 1-56.  doi: 10.4171/RMI/592.  Google Scholar

[12]

D. FangJ. Xie and T. Cazenave, Scattering for the focusing energy-subcritical nonlinear Schrödinger equation, Sci. China Math., 54 (2011), 2037-2062.  doi: 10.1007/s11425-011-4283-9.  Google Scholar

[13]

N. Godet, Blow-up in several points for the nonlinear Schrödinger equation on a bounded domain, Differential Integral Equations, 24 (2011), 505-517.   Google Scholar

[14]

M. Grillakis, Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system, Comm. Pure Appl. Math., 43 (1990), 299-333.  doi: 10.1002/cpa.3160430302.  Google Scholar

[15]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[16]

C. D. Guevara, Global behavior of finite energy solutions to the $d$-dimensional focusing nonlinear Schrödinger equation, Appl. Math. Res. Express. AMRX, 2014 (2014), 177-243.   Google Scholar

[17]

J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.  doi: 10.1007/s00220-008-0529-y.  Google Scholar

[18]

O. Ivanovici, On the Schrödinger equation outside strictly convex obstacles, Analysis and PDE, 3 (2010), 261-293.  doi: 10.2140/apde.2010.3.261.  Google Scholar

[19]

O. Ivanovici and G. Lebeau, Dispersion for the wave and the Schrödinger equations outside strictly convex obstacles and counterexamples, C. R. Math. Acad. Sci. Paris, 355 (2017), 774-779.  doi: 10.1016/j.crma.2017.05.011.  Google Scholar

[20]

O. Ivanovici and F. Planchon, On the energy critical Schrödinger equation in $3D$ non-trapping domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1153-1177.  doi: 10.1016/j.anihpc.2010.04.001.  Google Scholar

[21]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.  doi: 10.1007/s00222-006-0011-4.  Google Scholar

[22]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation., Acta Math., 201 (2008), 147-212.  doi: 10.1007/s11511-008-0031-6.  Google Scholar

[23]

R. KillipM. Visan and X. Zhang, Riesz transforms outside a convex obstacle, International Mathematics Research Notices, 2016 (2016), 5875-5921.  doi: 10.1093/imrn/rnv338.  Google Scholar

[24]

R. KillipM. Visan and X. Zhang, The focusing cubic NLS on exterior domains in three dimensions, Appl. Math. Res. Express. AMRX, 2016 (2016), 146-180.  doi: 10.1093/amrx/abv012.  Google Scholar

[25]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p = 0$ in ${\bf{R}}^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.  Google Scholar

[26]

D. Lafontaine, Strichartz estimates without loss outside two strictly convex obstacles, arXiv preprint, arXiv: 1709.03836, (2017). Google Scholar

[27]

D. Lafontaine, Strichartz estimates without loss outside many strictly convex obstacles, arXiv preprint, arXiv: 1811.12357, (2018). Google Scholar

[28]

D. LiH. Smith and X. Zhang, Global well-posedness and scattering for defocusing energy-critical NLS in the exterior of balls with radial data, Math. Res. Lett., 19 (2012), 213-232.  doi: 10.4310/MRL.2012.v19.n1.a17.  Google Scholar

[29]

Y. Martel and F. Merle, Multi solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 849-864.  doi: 10.1016/j.anihpc.2006.01.001.  Google Scholar

[30]

F. Merle, Construction of solutions with exactly $k$ blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys., 129 (1990), 223-240.  doi: 10.1007/BF02096981.  Google Scholar

[31]

F. Planchon and L. Vega, Bilinear virial identities and applications, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 261–290. doi: 10.24033/asens.2096.  Google Scholar

[32]

F. Planchon and L. Vega, Scattering for solutions of NLS in the exterior of a 2D star-shaped obstacle, Math. Res. Lett., 19 (2012), 887-897.  doi: 10.4310/MRL.2012.v19.n4.a12.  Google Scholar

[33]

W. Schlag, Spectral theory and nonlinear partial differential equations: A survey, Discrete Contin. Dyn. Syst., 15 (2006), 703-723.  doi: 10.3934/dcds.2006.15.703.  Google Scholar

[34]

F. A. Shakra, On 2D nonlinear Schrödinger equation on non-trapping exterior domains, Rev. Mat. Iberoam., 31 (2015), 657-680. Google Scholar

[35]

T. Tao, Nonlinear Dispersive Equations, vol. 106 of CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2006. Local and global analysis. doi: 10.1090/cbms/106.  Google Scholar

[36]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1982/83), 567-576.   Google Scholar

[37]

M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.  doi: 10.1137/0516034.  Google Scholar

[38]

M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-67.  doi: 10.1002/cpa.3160390103.  Google Scholar

[39]

K. Yang, The focusing NLS on exterior domains in three dimensions, Commun. Pure Appl. Anal., 16 (2017), 2269-2297.  doi: 10.3934/cpaa.2017112.  Google Scholar

[1]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[2]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[3]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[4]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021007

[5]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[6]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[7]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[8]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[9]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[10]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[11]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[12]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[13]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[14]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[15]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[16]

João Vitor da Silva, Hernán Vivas. Sharp regularity for degenerate obstacle type problems: A geometric approach. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1359-1385. doi: 10.3934/dcds.2020321

[17]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[18]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

[19]

Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160

[20]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

2019 Impact Factor: 1.338

Article outline

[Back to Top]