\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic dynamics of a system of conservation laws from chemotaxis

  • * Corresponding author: Kun Zhao

    * Corresponding author: Kun Zhao
Abstract Full Text(HTML) Related Papers Cited by
  • This paper is devoted to the analytical study of the long-time asymptotic behavior of solutions to the Cauchy problem of a system of conservation laws in one space dimension, which is derived from a repulsive chemotaxis model with singular sensitivity and nonlinear chemical production rate. Assuming the $ H^2 $-norm of the initial perturbation around a constant ground state is finite and using energy methods, we show that there exists a unique global-in-time solution to the Cauchy problem, and the constant ground state is globally asymptotically stable. In addition, the explicit decay rates of the solutions to the chemically diffusive and non-diffusive models are identified under different exponent ranges of the nonlinear chemical production function.

    Mathematics Subject Classification: Primary: 35B40; 35K57; 35Q92; Secondary: 92C17.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] J. Adler, Chemotaxis in bacteria, Science, 153 (1966), 708–716.
    [2] J. Adler, Chemoreceptors in bacteria, Science, 166 (1969), 1588–1597. doi: 10.1126/science.166.3913.1588.
    [3] N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663–1763. doi: 10.1142/S021820251550044X.
    [4] C. Deng and T. Li, Well-posedness of a 3D parabolic-hyperbolic Keller-Segel system in the Sobolev space framework, J. Differential Equations, 257 (2014), 1311–1332. doi: 10.1016/j.jde.2014.05.014.
    [5] J. Fan and K. Zhao, Blow up criteria for a hyperbolic-parabolic system arising from chemotaxis, J. Math. Anal. Appl., 394 (2012), 687–695. doi: 10.1016/j.jmaa.2012.05.036.
    [6] M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330–1355. doi: 10.1137/S0036141001385046.
    [7] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.
    [8] J. Guo, J. Xiao, H. Zhao and C. Zhu, Global solutions to a hyperbolic-parabolic coupled system with large initial data, Acta Math. Sci. Ser. B Engl. Ed, 29 (2009), 629–641. doi: 10.1016/S0252-9602(09)60059-X.
    [9] C. Hao, Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces, Z. Angew. Math. Phys., 63 (2012), 825–834. doi: 10.1007/s00033-012-0193-0.
    [10] T. Hillen and K. Painter, A users guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183–217. doi: 10.1007/s00285-008-0201-3.
    [11] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jahresber. Dtsch. Math.-Ver., 105 (2003), 103–165.
    [12] Q. Hou, C. Liu, Y. Wang and Z. Wang, Stability of boundary layers for a viscous hyperbolic system arising from chemotaxis: one dimensional case, SIAM J. Math. Anal., 50 (2018), 3058–3091. doi: 10.1137/17M112748X.
    [13] Q. Hou and Z. Wang, Convergence of boundary layers for the Keller-Segel system with singular sensitivity in the half-plane, J. Math. Pures. Appl., 130 (2019), 251–287. doi: 10.1016/j.matpur.2019.01.008.
    [14] Q. Hou, Z. Wang and K. Zhao, Boundary layer problem on a hyperbolic system arising from chemotaxis, J. Differential Equations, 261 (2016), 5035–5070. doi: 10.1016/j.jde.2016.07.018.
    [15] H. Jin, J. Li and Z. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity, J. Differential Equations, 255 (2013), 193–219. doi: 10.1016/j.jde.2013.04.002.
    [16] S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics, Doctoral Thesis, Kyoto University, 1983.
    [17] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415. doi: 10.1016/0022-5193(70)90092-5.
    [18] E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225–234. doi: 10.1016/0022-5193(71)90050-6.
    [19] E.F. Keller, L.A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971), 235–248. doi: 10.1016/0022-5193(71)90051-8.
    [20] H. A. Levine and B. D. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683–730. doi: 10.1137/S0036139995291106.
    [21] D. Li, T. Li and K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis, Math. Models Methods Appl. Sci., 21 (2011), 1631–1650. doi: 10.1142/S0218202511005519.
    [22] D. Li, R. Pan and K. Zhao, Quantitative decay of a hybrid type chemotaxis model with large data, Nonlinearity, 28 (2015), 2181–2210. doi: 10.1088/0951-7715/28/7/2181.
    [23] H. Li and K. Zhao, Initial boundary value problems for a system of hyperbolic conservation laws arising from chemotaxis, J. Differential Equations, 258 (2015), 302–338. doi: 10.1016/j.jde.2014.09.014.
    [24] J. Li, T. Li and Z. Wang, Stability of traveling waves of the Keller-Segel system with logarithmic sensitivity, Math. Models Methods Appl. Sci., 24 (2014), 2819–2849. doi: 10.1142/S0218202514500389.
    [25] T. Li, R. Pan and K. Zhao, Global dynamics of a hyperbolic-parabolic model arising from chemotaxis, SIAM J. Appl. Math., 72 (2012), 417–443. doi: 10.1137/110829453.
    [26] T. Li and Z. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2009), 1522–1541. doi: 10.1137/09075161X.
    [27] T. Li and Z. Wang, Nonlinear stability of large amplitude viscous shock waves of a hyperbolic-parabolic system arising in chemotaxis, Math. Models Methods Appl. Sci., 20 (2010), 1967–1998. doi: 10.1142/S0218202510004830.
    [28] T. Li and Z. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis, J. Differential Equations, 250 (2011), 1310–1333. doi: 10.1016/j.jde.2010.09.020.
    [29] T. Li and Z. Wang, Steadily propagating waves of a chemotaxis model, Math. Biosci., 240 (2012), 161–168. doi: 10.1016/j.mbs.2012.07.003.
    [30] V. Martinez, Z. Wang and K. Zhao, Asymptotic and viscous stability of large amplitude solutions of a hyperbolic system arising from biology, Indiana Univ. Math. J., 67 (2018), 1383–1424. doi: 10.1512/iumj.2018.67.7394.
    [31] M. Mei, H. Peng and Z. Wang, Asymptotic profile of a parabolic-hyperbolic system with boundary effect arising from tumor angiogenesis, J. Differential Equations, 259 (2015), 5168–5191. doi: 10.1016/j.jde.2015.06.022.
    [32] J. D. Murray, Mathematical Biology I: An Introduction, 3rd edition, Springer-Verlag, New York, 2002.
    [33] H. Othmer and A. Stevens, Aggregation, blowup and collapse: The ABC's of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044–1081.
    [34] H. Peng and Z. Wang, Nonlinear stability of strong traveling waves for the singular Keller-Segel system with large perturbations, J. Differential Equations, 265 (2018), 2577–2613. doi: 10.1016/j.jde.2018.04.041.
    [35] H. Peng, Z. Wang, K. Zhao and C. Zhu, Boundary layers and stabilization of the singular Keller-Segel system, Kinetic and Related Models, 11 (2018), 1085–1123. doi: 10.3934/krm.2018042.
    [36] H. Peng, H. Wen and C. Zhu, Global well-posedness and zero diffusion limit of classical solutions to 3D conservation laws arising in chemotaxis., Z. Angew. Math. Phys., 65 (2014), 1167–1188. doi: 10.1007/s00033-013-0378-1.
    [37] L. RebholzD. WangZ. WangC. Zerfas and K. Zhao, Initial boundary value problems for a system of parabolic conservation laws arising from chemotaxis in multi-dimensions, Disc. Cont. Dyn. Syst. Ser. A, 39 (2019), 3789-3838.  doi: 10.3934/dcds.2019154.
    [38] Y. Tao, Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2705–2722. doi: 10.3934/dcdsb.2013.18.2705.
    [39] Y. Tao, L. Wang and Z. Wang, Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 821–845. doi: 10.3934/dcdsb.2013.18.821.
    [40] Y. Tao and Z. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1–36. doi: 10.1142/S0218202512500443.
    [41] D. Wang, Z. Wang and K. Zhao, Cauchy problem of a system of parabolic conservation laws arising from a Keller-Segel type chemotaxis model in multi-dimensions, Indiana Univ. Math. J., in press.
    [42] Z. Wang, Mathematics of traveling waves in chemotaxis, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 601–641. doi: 10.3934/dcdsb.2013.18.601.
    [43] Z. Wang and T. Hillen, Shock formation in a chemotaxis model, Math. Methods Appl. Sci., 31 (2008), 45–70. doi: 10.1002/mma.898.
    [44] Z. Wang, Z. Xiang and P. Yu, Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis, J. Differential Equations, 260 (2016), 2225–2258. doi: 10.1016/j.jde.2015.09.063.
    [45] Z. Wang and K. Zhao, Global dynamics and diffusion limit of a parabolic system arising from repulsive chemotaxis, Commun. Pure Appl. Anal., 12 (2013), 3027–3046. doi: 10.3934/cpaa.2013.12.3027.
    [46] Y. Zeng, Global existence theory for general hyperbolic-parabolic balance laws with application, J. Hyper. Differ. Equ., 14 (2017), 359–391. doi: 10.1142/S0219891617500126.
    [47] M. Zhang and C. Zhu, Global existence of solutions to a hyperbolic-parabolic system, Proc. Amer. Math. Soc., 135 (2006), 1017–1027. doi: 10.1090/S0002-9939-06-08773-9.
    [48] Y. Zhang, Z. Tan and M. Sun, Global existence and asymptotic behavior of smooth solutions to a coupled hyperbolic-parabolic system, Nonlinear Anal.: Real World Appl., 14 (2013), 465–482. doi: 10.1016/j.nonrwa.2012.07.009.
    [49] N. Zhu, Z. Liu, V. Martinez and K. Zhao, Global Cauchy problem of a system of parabolic conservation laws arising from a Keller-Segel type chemotaxis model, SIAM J. Math. Anal., 50 (2018), 5380–5425. doi: 10.1137/17M1135645.
  • 加载中
SHARE

Article Metrics

HTML views(430) PDF downloads(393) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return