-
Previous Article
Well-posedness of some non-linear stable driven SDEs
- DCDS Home
- This Issue
-
Next Article
Attainability property for a probabilistic target in wasserstein spaces
Asymptotic dynamics of a system of conservation laws from chemotaxis
1. | Department of Mathematics, Nanchang University, Nanchang 330031, China |
2. | School of Mathematics, South China University of Technology, Guangzhou 510640, China |
3. | School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha 410114, China |
4. | Department of Mathematics, Tulane University, New Orleans, LA 70118, USA |
This paper is devoted to the analytical study of the long-time asymptotic behavior of solutions to the Cauchy problem of a system of conservation laws in one space dimension, which is derived from a repulsive chemotaxis model with singular sensitivity and nonlinear chemical production rate. Assuming the $ H^2 $-norm of the initial perturbation around a constant ground state is finite and using energy methods, we show that there exists a unique global-in-time solution to the Cauchy problem, and the constant ground state is globally asymptotically stable. In addition, the explicit decay rates of the solutions to the chemically diffusive and non-diffusive models are identified under different exponent ranges of the nonlinear chemical production function.
References:
[1] |
J. Adler, Chemotaxis in bacteria, Science, 153 (1966), 708–716. Google Scholar |
[2] |
J. Adler, Chemoreceptors in bacteria, Science, 166 (1969), 1588–1597.
doi: 10.1126/science.166.3913.1588. |
[3] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663–1763.
doi: 10.1142/S021820251550044X. |
[4] |
C. Deng and T. Li, Well-posedness of a 3D parabolic-hyperbolic Keller-Segel system in the Sobolev space framework, J. Differential Equations, 257 (2014), 1311–1332.
doi: 10.1016/j.jde.2014.05.014. |
[5] |
J. Fan and K. Zhao, Blow up criteria for a hyperbolic-parabolic system arising from chemotaxis, J. Math. Anal. Appl., 394 (2012), 687–695.
doi: 10.1016/j.jmaa.2012.05.036. |
[6] |
M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330–1355.
doi: 10.1137/S0036141001385046. |
[7] |
A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. Google Scholar |
[8] |
J. Guo, J. Xiao, H. Zhao and C. Zhu, Global solutions to a hyperbolic-parabolic coupled system with large initial data, Acta Math. Sci. Ser. B Engl. Ed, 29 (2009), 629–641.
doi: 10.1016/S0252-9602(09)60059-X. |
[9] |
C. Hao, Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces, Z. Angew. Math. Phys., 63 (2012), 825–834.
doi: 10.1007/s00033-012-0193-0. |
[10] |
T. Hillen and K. Painter, A users guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183–217.
doi: 10.1007/s00285-008-0201-3. |
[11] |
D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jahresber. Dtsch. Math.-Ver., 105 (2003), 103–165. |
[12] |
Q. Hou, C. Liu, Y. Wang and Z. Wang, Stability of boundary layers for a viscous hyperbolic system arising from chemotaxis: one dimensional case, SIAM J. Math. Anal., 50 (2018), 3058–3091.
doi: 10.1137/17M112748X. |
[13] |
Q. Hou and Z. Wang, Convergence of boundary layers for the Keller-Segel system with singular sensitivity in the half-plane, J. Math. Pures. Appl., 130 (2019), 251–287.
doi: 10.1016/j.matpur.2019.01.008. |
[14] |
Q. Hou, Z. Wang and K. Zhao, Boundary layer problem on a hyperbolic system arising from chemotaxis, J. Differential Equations, 261 (2016), 5035–5070.
doi: 10.1016/j.jde.2016.07.018. |
[15] |
H. Jin, J. Li and Z. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity, J. Differential Equations, 255 (2013), 193–219.
doi: 10.1016/j.jde.2013.04.002. |
[16] |
S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics, Doctoral Thesis, Kyoto University, 1983. Google Scholar |
[17] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415.
doi: 10.1016/0022-5193(70)90092-5. |
[18] |
E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225–234.
doi: 10.1016/0022-5193(71)90050-6. |
[19] |
E.F. Keller, L.A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971), 235–248.
doi: 10.1016/0022-5193(71)90051-8. |
[20] |
H. A. Levine and B. D. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683–730.
doi: 10.1137/S0036139995291106. |
[21] |
D. Li, T. Li and K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis, Math. Models Methods Appl. Sci., 21 (2011), 1631–1650.
doi: 10.1142/S0218202511005519. |
[22] |
D. Li, R. Pan and K. Zhao, Quantitative decay of a hybrid type chemotaxis model with large data, Nonlinearity, 28 (2015), 2181–2210.
doi: 10.1088/0951-7715/28/7/2181. |
[23] |
H. Li and K. Zhao, Initial boundary value problems for a system of hyperbolic conservation laws arising from chemotaxis, J. Differential Equations, 258 (2015), 302–338.
doi: 10.1016/j.jde.2014.09.014. |
[24] |
J. Li, T. Li and Z. Wang, Stability of traveling waves of the Keller-Segel system with logarithmic sensitivity, Math. Models Methods Appl. Sci., 24 (2014), 2819–2849.
doi: 10.1142/S0218202514500389. |
[25] |
T. Li, R. Pan and K. Zhao, Global dynamics of a hyperbolic-parabolic model arising from chemotaxis, SIAM J. Appl. Math., 72 (2012), 417–443.
doi: 10.1137/110829453. |
[26] |
T. Li and Z. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2009), 1522–1541.
doi: 10.1137/09075161X. |
[27] |
T. Li and Z. Wang, Nonlinear stability of large amplitude viscous shock waves of a hyperbolic-parabolic system arising in chemotaxis, Math. Models Methods Appl. Sci., 20 (2010), 1967–1998.
doi: 10.1142/S0218202510004830. |
[28] |
T. Li and Z. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis, J. Differential Equations, 250 (2011), 1310–1333.
doi: 10.1016/j.jde.2010.09.020. |
[29] |
T. Li and Z. Wang, Steadily propagating waves of a chemotaxis model, Math. Biosci., 240 (2012), 161–168.
doi: 10.1016/j.mbs.2012.07.003. |
[30] |
V. Martinez, Z. Wang and K. Zhao, Asymptotic and viscous stability of large amplitude solutions of a hyperbolic system arising from biology, Indiana Univ. Math. J., 67 (2018), 1383–1424.
doi: 10.1512/iumj.2018.67.7394. |
[31] |
M. Mei, H. Peng and Z. Wang, Asymptotic profile of a parabolic-hyperbolic system with boundary effect arising from tumor angiogenesis, J. Differential Equations, 259 (2015), 5168–5191.
doi: 10.1016/j.jde.2015.06.022. |
[32] |
J. D. Murray, Mathematical Biology I: An Introduction, 3rd edition, Springer-Verlag, New York, 2002. |
[33] |
H. Othmer and A. Stevens, Aggregation, blowup and collapse: The ABC's of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044–1081. |
[34] |
H. Peng and Z. Wang, Nonlinear stability of strong traveling waves for the singular Keller-Segel system with large perturbations, J. Differential Equations, 265 (2018), 2577–2613.
doi: 10.1016/j.jde.2018.04.041. |
[35] |
H. Peng, Z. Wang, K. Zhao and C. Zhu, Boundary layers and stabilization of the singular Keller-Segel system, Kinetic and Related Models, 11 (2018), 1085–1123.
doi: 10.3934/krm.2018042. |
[36] |
H. Peng, H. Wen and C. Zhu, Global well-posedness and zero diffusion limit of classical solutions to 3D conservation laws arising in chemotaxis., Z. Angew. Math. Phys., 65 (2014), 1167–1188.
doi: 10.1007/s00033-013-0378-1. |
[37] |
L. Rebholz, D. Wang, Z. Wang, C. Zerfas and K. Zhao,
Initial boundary value problems for a system of parabolic conservation laws arising from chemotaxis in multi-dimensions, Disc. Cont. Dyn. Syst. Ser. A, 39 (2019), 3789-3838.
doi: 10.3934/dcds.2019154. |
[38] |
Y. Tao, Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2705–2722.
doi: 10.3934/dcdsb.2013.18.2705. |
[39] |
Y. Tao, L. Wang and Z. Wang, Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 821–845.
doi: 10.3934/dcdsb.2013.18.821. |
[40] |
Y. Tao and Z. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1–36.
doi: 10.1142/S0218202512500443. |
[41] |
D. Wang, Z. Wang and K. Zhao, Cauchy problem of a system of parabolic conservation laws arising from a Keller-Segel type chemotaxis model in multi-dimensions, Indiana Univ. Math. J., in press. Google Scholar |
[42] |
Z. Wang, Mathematics of traveling waves in chemotaxis, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 601–641.
doi: 10.3934/dcdsb.2013.18.601. |
[43] |
Z. Wang and T. Hillen, Shock formation in a chemotaxis model, Math. Methods Appl. Sci., 31 (2008), 45–70.
doi: 10.1002/mma.898. |
[44] |
Z. Wang, Z. Xiang and P. Yu, Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis, J. Differential Equations, 260 (2016), 2225–2258.
doi: 10.1016/j.jde.2015.09.063. |
[45] |
Z. Wang and K. Zhao, Global dynamics and diffusion limit of a parabolic system arising from repulsive chemotaxis, Commun. Pure Appl. Anal., 12 (2013), 3027–3046.
doi: 10.3934/cpaa.2013.12.3027. |
[46] |
Y. Zeng, Global existence theory for general hyperbolic-parabolic balance laws with application, J. Hyper. Differ. Equ., 14 (2017), 359–391.
doi: 10.1142/S0219891617500126. |
[47] |
M. Zhang and C. Zhu, Global existence of solutions to a hyperbolic-parabolic system, Proc. Amer. Math. Soc., 135 (2006), 1017–1027.
doi: 10.1090/S0002-9939-06-08773-9. |
[48] |
Y. Zhang, Z. Tan and M. Sun, Global existence and asymptotic behavior of smooth solutions to a coupled hyperbolic-parabolic system, Nonlinear Anal.: Real World Appl., 14 (2013), 465–482.
doi: 10.1016/j.nonrwa.2012.07.009. |
[49] |
N. Zhu, Z. Liu, V. Martinez and K. Zhao, Global Cauchy problem of a system of parabolic conservation laws arising from a Keller-Segel type chemotaxis model, SIAM J. Math. Anal., 50 (2018), 5380–5425.
doi: 10.1137/17M1135645. |
show all references
References:
[1] |
J. Adler, Chemotaxis in bacteria, Science, 153 (1966), 708–716. Google Scholar |
[2] |
J. Adler, Chemoreceptors in bacteria, Science, 166 (1969), 1588–1597.
doi: 10.1126/science.166.3913.1588. |
[3] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663–1763.
doi: 10.1142/S021820251550044X. |
[4] |
C. Deng and T. Li, Well-posedness of a 3D parabolic-hyperbolic Keller-Segel system in the Sobolev space framework, J. Differential Equations, 257 (2014), 1311–1332.
doi: 10.1016/j.jde.2014.05.014. |
[5] |
J. Fan and K. Zhao, Blow up criteria for a hyperbolic-parabolic system arising from chemotaxis, J. Math. Anal. Appl., 394 (2012), 687–695.
doi: 10.1016/j.jmaa.2012.05.036. |
[6] |
M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330–1355.
doi: 10.1137/S0036141001385046. |
[7] |
A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. Google Scholar |
[8] |
J. Guo, J. Xiao, H. Zhao and C. Zhu, Global solutions to a hyperbolic-parabolic coupled system with large initial data, Acta Math. Sci. Ser. B Engl. Ed, 29 (2009), 629–641.
doi: 10.1016/S0252-9602(09)60059-X. |
[9] |
C. Hao, Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces, Z. Angew. Math. Phys., 63 (2012), 825–834.
doi: 10.1007/s00033-012-0193-0. |
[10] |
T. Hillen and K. Painter, A users guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183–217.
doi: 10.1007/s00285-008-0201-3. |
[11] |
D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jahresber. Dtsch. Math.-Ver., 105 (2003), 103–165. |
[12] |
Q. Hou, C. Liu, Y. Wang and Z. Wang, Stability of boundary layers for a viscous hyperbolic system arising from chemotaxis: one dimensional case, SIAM J. Math. Anal., 50 (2018), 3058–3091.
doi: 10.1137/17M112748X. |
[13] |
Q. Hou and Z. Wang, Convergence of boundary layers for the Keller-Segel system with singular sensitivity in the half-plane, J. Math. Pures. Appl., 130 (2019), 251–287.
doi: 10.1016/j.matpur.2019.01.008. |
[14] |
Q. Hou, Z. Wang and K. Zhao, Boundary layer problem on a hyperbolic system arising from chemotaxis, J. Differential Equations, 261 (2016), 5035–5070.
doi: 10.1016/j.jde.2016.07.018. |
[15] |
H. Jin, J. Li and Z. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity, J. Differential Equations, 255 (2013), 193–219.
doi: 10.1016/j.jde.2013.04.002. |
[16] |
S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics, Doctoral Thesis, Kyoto University, 1983. Google Scholar |
[17] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415.
doi: 10.1016/0022-5193(70)90092-5. |
[18] |
E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225–234.
doi: 10.1016/0022-5193(71)90050-6. |
[19] |
E.F. Keller, L.A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971), 235–248.
doi: 10.1016/0022-5193(71)90051-8. |
[20] |
H. A. Levine and B. D. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683–730.
doi: 10.1137/S0036139995291106. |
[21] |
D. Li, T. Li and K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis, Math. Models Methods Appl. Sci., 21 (2011), 1631–1650.
doi: 10.1142/S0218202511005519. |
[22] |
D. Li, R. Pan and K. Zhao, Quantitative decay of a hybrid type chemotaxis model with large data, Nonlinearity, 28 (2015), 2181–2210.
doi: 10.1088/0951-7715/28/7/2181. |
[23] |
H. Li and K. Zhao, Initial boundary value problems for a system of hyperbolic conservation laws arising from chemotaxis, J. Differential Equations, 258 (2015), 302–338.
doi: 10.1016/j.jde.2014.09.014. |
[24] |
J. Li, T. Li and Z. Wang, Stability of traveling waves of the Keller-Segel system with logarithmic sensitivity, Math. Models Methods Appl. Sci., 24 (2014), 2819–2849.
doi: 10.1142/S0218202514500389. |
[25] |
T. Li, R. Pan and K. Zhao, Global dynamics of a hyperbolic-parabolic model arising from chemotaxis, SIAM J. Appl. Math., 72 (2012), 417–443.
doi: 10.1137/110829453. |
[26] |
T. Li and Z. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2009), 1522–1541.
doi: 10.1137/09075161X. |
[27] |
T. Li and Z. Wang, Nonlinear stability of large amplitude viscous shock waves of a hyperbolic-parabolic system arising in chemotaxis, Math. Models Methods Appl. Sci., 20 (2010), 1967–1998.
doi: 10.1142/S0218202510004830. |
[28] |
T. Li and Z. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis, J. Differential Equations, 250 (2011), 1310–1333.
doi: 10.1016/j.jde.2010.09.020. |
[29] |
T. Li and Z. Wang, Steadily propagating waves of a chemotaxis model, Math. Biosci., 240 (2012), 161–168.
doi: 10.1016/j.mbs.2012.07.003. |
[30] |
V. Martinez, Z. Wang and K. Zhao, Asymptotic and viscous stability of large amplitude solutions of a hyperbolic system arising from biology, Indiana Univ. Math. J., 67 (2018), 1383–1424.
doi: 10.1512/iumj.2018.67.7394. |
[31] |
M. Mei, H. Peng and Z. Wang, Asymptotic profile of a parabolic-hyperbolic system with boundary effect arising from tumor angiogenesis, J. Differential Equations, 259 (2015), 5168–5191.
doi: 10.1016/j.jde.2015.06.022. |
[32] |
J. D. Murray, Mathematical Biology I: An Introduction, 3rd edition, Springer-Verlag, New York, 2002. |
[33] |
H. Othmer and A. Stevens, Aggregation, blowup and collapse: The ABC's of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044–1081. |
[34] |
H. Peng and Z. Wang, Nonlinear stability of strong traveling waves for the singular Keller-Segel system with large perturbations, J. Differential Equations, 265 (2018), 2577–2613.
doi: 10.1016/j.jde.2018.04.041. |
[35] |
H. Peng, Z. Wang, K. Zhao and C. Zhu, Boundary layers and stabilization of the singular Keller-Segel system, Kinetic and Related Models, 11 (2018), 1085–1123.
doi: 10.3934/krm.2018042. |
[36] |
H. Peng, H. Wen and C. Zhu, Global well-posedness and zero diffusion limit of classical solutions to 3D conservation laws arising in chemotaxis., Z. Angew. Math. Phys., 65 (2014), 1167–1188.
doi: 10.1007/s00033-013-0378-1. |
[37] |
L. Rebholz, D. Wang, Z. Wang, C. Zerfas and K. Zhao,
Initial boundary value problems for a system of parabolic conservation laws arising from chemotaxis in multi-dimensions, Disc. Cont. Dyn. Syst. Ser. A, 39 (2019), 3789-3838.
doi: 10.3934/dcds.2019154. |
[38] |
Y. Tao, Global dynamics in a higher-dimensional repulsion chemotaxis model with nonlinear sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2705–2722.
doi: 10.3934/dcdsb.2013.18.2705. |
[39] |
Y. Tao, L. Wang and Z. Wang, Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 821–845.
doi: 10.3934/dcdsb.2013.18.821. |
[40] |
Y. Tao and Z. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1–36.
doi: 10.1142/S0218202512500443. |
[41] |
D. Wang, Z. Wang and K. Zhao, Cauchy problem of a system of parabolic conservation laws arising from a Keller-Segel type chemotaxis model in multi-dimensions, Indiana Univ. Math. J., in press. Google Scholar |
[42] |
Z. Wang, Mathematics of traveling waves in chemotaxis, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 601–641.
doi: 10.3934/dcdsb.2013.18.601. |
[43] |
Z. Wang and T. Hillen, Shock formation in a chemotaxis model, Math. Methods Appl. Sci., 31 (2008), 45–70.
doi: 10.1002/mma.898. |
[44] |
Z. Wang, Z. Xiang and P. Yu, Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis, J. Differential Equations, 260 (2016), 2225–2258.
doi: 10.1016/j.jde.2015.09.063. |
[45] |
Z. Wang and K. Zhao, Global dynamics and diffusion limit of a parabolic system arising from repulsive chemotaxis, Commun. Pure Appl. Anal., 12 (2013), 3027–3046.
doi: 10.3934/cpaa.2013.12.3027. |
[46] |
Y. Zeng, Global existence theory for general hyperbolic-parabolic balance laws with application, J. Hyper. Differ. Equ., 14 (2017), 359–391.
doi: 10.1142/S0219891617500126. |
[47] |
M. Zhang and C. Zhu, Global existence of solutions to a hyperbolic-parabolic system, Proc. Amer. Math. Soc., 135 (2006), 1017–1027.
doi: 10.1090/S0002-9939-06-08773-9. |
[48] |
Y. Zhang, Z. Tan and M. Sun, Global existence and asymptotic behavior of smooth solutions to a coupled hyperbolic-parabolic system, Nonlinear Anal.: Real World Appl., 14 (2013), 465–482.
doi: 10.1016/j.nonrwa.2012.07.009. |
[49] |
N. Zhu, Z. Liu, V. Martinez and K. Zhao, Global Cauchy problem of a system of parabolic conservation laws arising from a Keller-Segel type chemotaxis model, SIAM J. Math. Anal., 50 (2018), 5380–5425.
doi: 10.1137/17M1135645. |
[1] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[2] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[3] |
Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161 |
[4] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[5] |
Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 |
[6] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[7] |
Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020360 |
[8] |
Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 |
[9] |
Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361 |
[10] |
Charlotte Rodriguez. Networks of geometrically exact beams: Well-posedness and stabilization. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021002 |
[11] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020382 |
[12] |
José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 |
[13] |
Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248 |
[14] |
Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020377 |
[15] |
Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021006 |
[16] |
Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041 |
[17] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[18] |
Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020367 |
[19] |
Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312 |
[20] |
Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 |
2019 Impact Factor: 1.338
Tools
Article outline
[Back to Top]