
-
Previous Article
Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions
- DCDS Home
- This Issue
-
Next Article
Well-posedness of some non-linear stable driven SDEs
A generalization of the Babbage functional equation
Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom |
A recent refinement of Kerékjártó's Theorem has shown that in $ \mathbb R $ and $ \mathbb R^2 $ all $ \mathcal C^l $–solutions of the functional equation $ f^n = \text{Id} $ are $ \mathcal C^l $–linearizable, where $ l\in \{0,1,\dots \infty\} $. When $ l\geq 1 $, in the real line we prove that the same result holds for solutions of $ f^n = f $, while we can only get a local version of it in the plane. Through examples, we show that these results are no longer true when $ l = 0 $ or when considering the functional equation $ f^n = f^k $ with $ n>k\geq 2 $.
References:
[1] |
C. Babbage, An essay towards the calculus of functions, Philos. Trans. Royal Soc., 105 (1815), 389-423. Google Scholar |
[2] |
N. Bacaër, A Short History of Mathematical Population Dynamics, Springer-Verlag London Ltd., London, 2011.
doi: 10.1007/978-0-85729-115-8. |
[3] |
K. Baron and W. Jarczyk,
Recent results on functional equations in a single variable, perspectives and open problems, Aequ. Math., 61 (2001), 1-48.
doi: 10.1007/s000100050159. |
[4] |
R. H. Bing,
Inequivalent families of periodic homeomorphisms of $E^3$, Ann. of Math., 80 (1964), 78-93.
doi: 10.2307/1970492. |
[5] |
A. Cima, A. Gasull, F. Mañosas and R. Ortega,
Linearization of planar involutions in $\mathcal C^1$, Ann. Mat. Pura Appl., 194 (2015), 1349-1357.
doi: 10.1007/s10231-014-0423-5. |
[6] |
A. Cima, A. Gasull, F. Mañosas and R. Ortega,
Smooth linearisation of planar periodic maps, Math. Proc. Camb. Philos. Soc., 167 (2019), 295-320.
doi: 10.1017/S0305004118000336. |
[7] |
A. Constantin and B. Kolev,
The theorem of Kerérekjártó on periodic homeomorphisms of the disc and the sphere, Enseign. Math., 40 (1994), 193-204.
|
[8] |
G. M. Ewing and W. R. Utz,
Continuous solutions of the functional equation $f^n(x) = f(x)$, Canadian J. Math., 5 (1953), 101-103.
doi: 10.4153/CJM-1953-012-8. |
[9] |
A. Haefliger,
Plongements différentiables de variétés dans variétés, Comment. Math. Helv., 36 (1962), 47-82.
|
[10] |
R. Haynes, S. Kwasik, J. Mast and R. Schultz,
Periodic maps on $R^7$ without fixed points, Math. Proc. Camb. Philos. Soc., 132 (2002), 131-136.
doi: 10.1017/S0305004101005345. |
[11] |
M. Hirsch, Differential Topology, Springer-Verlag, 1976. |
[12] |
M. Holz, K. Steffens and E. Weitz, Introduction to Cardinal Arithmetic, Birkhäuser Verlag, 2010.
doi: 10.1007/978-3-0346-0330-0. |
[13] |
G. Ishikawa and T. Nishimura,
Smooth retracts of Euclidean space, Kodai Math. J., 18 (1995), 260-265.
|
[14] |
W. Jarczyk,
Babbage equation on the circle, Publ. Math., 63 (2003), 389-400.
|
[15] |
N. McShane,
On the periodicity of homeomorphisms of the real line, Amer. Math. Monthly, 68 (1961), 562-563.
doi: 10.2307/2311152. |
[16] |
J. Milnor, Topology from the Differentiable Viewpoint, University of Virginia Press, 1965.
![]() |
[17] |
J. Munkres, Topology, 2$^{nd}$ edition, Prentice Hall, Inc., Upper Saddle River, NJ, 2000. |
[18] |
I. Richards,
On the classification of non-compact surfaces, Trans. Am. Math. Soc., 106 (1963), 259-269.
doi: 10.1090/S0002-9947-1963-0143186-0. |
[19] |
M. Spivak, A Comprehensive Introduction to Differential Geometry, vol. 1, 3$^rd$ edition, Publish or Perish, 1970. |
[20] |
E. Stein, Complex Analysis, Princeton University Press, Princeton, N.J., 2003.
![]() |
[21] |
T. W. Tucker,
On the Fox-Artin sphere and surfaces in noncompact 3-manifolds, Q. J. Math., 28 (1977), 243-253.
doi: 10.1093/qmath/28.2.243. |
[22] |
B. von Kérékjartó,
Über die periodischen transformationen der kreisscheibe und der kugelfläche, Math. Ann., 80 (1919), 36-38.
doi: 10.1007/BF01463232. |
[23] |
V. B. Yap, Re-imagining the Hardy-Weinberg law, 2013, arXiv: 1307.4417v1. Google Scholar |
show all references
References:
[1] |
C. Babbage, An essay towards the calculus of functions, Philos. Trans. Royal Soc., 105 (1815), 389-423. Google Scholar |
[2] |
N. Bacaër, A Short History of Mathematical Population Dynamics, Springer-Verlag London Ltd., London, 2011.
doi: 10.1007/978-0-85729-115-8. |
[3] |
K. Baron and W. Jarczyk,
Recent results on functional equations in a single variable, perspectives and open problems, Aequ. Math., 61 (2001), 1-48.
doi: 10.1007/s000100050159. |
[4] |
R. H. Bing,
Inequivalent families of periodic homeomorphisms of $E^3$, Ann. of Math., 80 (1964), 78-93.
doi: 10.2307/1970492. |
[5] |
A. Cima, A. Gasull, F. Mañosas and R. Ortega,
Linearization of planar involutions in $\mathcal C^1$, Ann. Mat. Pura Appl., 194 (2015), 1349-1357.
doi: 10.1007/s10231-014-0423-5. |
[6] |
A. Cima, A. Gasull, F. Mañosas and R. Ortega,
Smooth linearisation of planar periodic maps, Math. Proc. Camb. Philos. Soc., 167 (2019), 295-320.
doi: 10.1017/S0305004118000336. |
[7] |
A. Constantin and B. Kolev,
The theorem of Kerérekjártó on periodic homeomorphisms of the disc and the sphere, Enseign. Math., 40 (1994), 193-204.
|
[8] |
G. M. Ewing and W. R. Utz,
Continuous solutions of the functional equation $f^n(x) = f(x)$, Canadian J. Math., 5 (1953), 101-103.
doi: 10.4153/CJM-1953-012-8. |
[9] |
A. Haefliger,
Plongements différentiables de variétés dans variétés, Comment. Math. Helv., 36 (1962), 47-82.
|
[10] |
R. Haynes, S. Kwasik, J. Mast and R. Schultz,
Periodic maps on $R^7$ without fixed points, Math. Proc. Camb. Philos. Soc., 132 (2002), 131-136.
doi: 10.1017/S0305004101005345. |
[11] |
M. Hirsch, Differential Topology, Springer-Verlag, 1976. |
[12] |
M. Holz, K. Steffens and E. Weitz, Introduction to Cardinal Arithmetic, Birkhäuser Verlag, 2010.
doi: 10.1007/978-3-0346-0330-0. |
[13] |
G. Ishikawa and T. Nishimura,
Smooth retracts of Euclidean space, Kodai Math. J., 18 (1995), 260-265.
|
[14] |
W. Jarczyk,
Babbage equation on the circle, Publ. Math., 63 (2003), 389-400.
|
[15] |
N. McShane,
On the periodicity of homeomorphisms of the real line, Amer. Math. Monthly, 68 (1961), 562-563.
doi: 10.2307/2311152. |
[16] |
J. Milnor, Topology from the Differentiable Viewpoint, University of Virginia Press, 1965.
![]() |
[17] |
J. Munkres, Topology, 2$^{nd}$ edition, Prentice Hall, Inc., Upper Saddle River, NJ, 2000. |
[18] |
I. Richards,
On the classification of non-compact surfaces, Trans. Am. Math. Soc., 106 (1963), 259-269.
doi: 10.1090/S0002-9947-1963-0143186-0. |
[19] |
M. Spivak, A Comprehensive Introduction to Differential Geometry, vol. 1, 3$^rd$ edition, Publish or Perish, 1970. |
[20] |
E. Stein, Complex Analysis, Princeton University Press, Princeton, N.J., 2003.
![]() |
[21] |
T. W. Tucker,
On the Fox-Artin sphere and surfaces in noncompact 3-manifolds, Q. J. Math., 28 (1977), 243-253.
doi: 10.1093/qmath/28.2.243. |
[22] |
B. von Kérékjartó,
Über die periodischen transformationen der kreisscheibe und der kugelfläche, Math. Ann., 80 (1919), 36-38.
doi: 10.1007/BF01463232. |
[23] |
V. B. Yap, Re-imagining the Hardy-Weinberg law, 2013, arXiv: 1307.4417v1. Google Scholar |


[1] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020390 |
[2] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[3] |
Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028 |
[4] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[5] |
Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160 |
[6] |
Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031 |
[7] |
Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268 |
[8] |
Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021027 |
[9] |
Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2020032 |
[10] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[11] |
Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021025 |
[12] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020374 |
[13] |
Honglei Lang, Yunhe Sheng. Linearization of the higher analogue of Courant algebroids. Journal of Geometric Mechanics, 2020, 12 (4) : 585-606. doi: 10.3934/jgm.2020025 |
[14] |
Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136 |
[15] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020345 |
[16] |
Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020384 |
[17] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
[18] |
Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020370 |
[19] |
François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221 |
[20] |
Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299 |
2019 Impact Factor: 1.338
Tools
Article outline
Figures and Tables
[Back to Top]