February  2021, 41(2): 987-1003. doi: 10.3934/dcds.2020306

$ N- $Laplacian problems with critical double exponential nonlinearities

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

* Corresponding author: Chun-Lei Tang

Received  September 2019 Revised  December 2019 Published  February 2021 Early access  August 2020

Fund Project: The research was supported by National Nature Science Foundation of China (11971392, 11971393 and 11901473), Natural Science Foundation of Chongqing, China cstc2019jcyjjqX0022 and Fundamental Research Funds for the Central Universities XDJK2019TY001

In this paper, we prove the existence of a nontrivial solution for the following boundary value problem
$ \left\{ {\begin{array}{*{20}{l}}{ - {\rm{div}}(\omega (x)|\nabla u(x){|^{N - 2}}\nabla u(x)) = f(x,u),\;\;\quad }&{\;\;\;\;\;{\rm{in}}\;B;}\\{u = 0,\;\;\quad }&{\;\;\;\;\;{\rm{on}}\;\partial B,}\end{array}} \right.{\rm{ }}\;\;\;\;\;\;\;\left( 1 \right)$
where
$ B $
is the unit ball in
$ \mathbb{R}^N $
,
$ N\geq 2 $
, the radial positive weight
$ \omega(x) $
is of logarithmic type, the function
$ f(x,u) $
is continuous in
$ B\times\mathbb{R} $
and has critical double exponential growth, which behaves like
$ \exp\{e^{\alpha |u|^{\frac{N}{N-1}}}\} $
as
$ |u|\to\infty $
for some
$ \alpha>0 $
.
Citation: Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306
References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.

[2]

L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal., 19 (1992), 581-597.  doi: 10.1016/0362-546X(92)90023-8.

[3]

M. Calanchi, Some weighted inequalities of Trudinger-Moser type, in: Progress in Nonlinear Differential Equations and Appl., Birkhäuser, 85 (2014), 163–174.

[4]

M. CalanchiE. Massa and B. Ruf, Weighted Trudinger-Moser inequalities and associated Liouville type equations, Proc. Amer. Math. Soc., 146 (2018), 5243-5256.  doi: 10.1090/proc/14189.

[5]

M. Calanchi and B. Ruf, On Trudinger-Moser type inequalities with logarithmic weights, J. Differ. Equ., 258 (2015), 1967-1989.  doi: 10.1016/j.jde.2014.11.019.

[6]

M. Calanchi and B. Ruf, Trudinger-Moser type inequalities with logarithmic weights in dimension $N$, Nonlinear Anal., 121 (2015), 403-411.  doi: 10.1016/j.na.2015.02.001.

[7]

M. Calanchi, B. Ruf and F. Sani, Elliptic equations in dimension 2 with double exponential nonlinearities, NoDEA Nonlinear Differential Equations Appl., 24 (2017), 29, 18 pp. doi: 10.1007/s00030-017-0453-y.

[8]

D. G. de FigueiredoO. H. Miyagaki and B. Ruf, Elliptic equations in $R^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.  doi: 10.1007/BF01205003.

[9]

S. Deng, Existence of solutions for some weighted mean field equations in dimension $N$, Appl. Math. Lett., 100 (2020), 106010, 7 pp. doi: 10.1016/j.aml.2019.106010.

[10]

J. M. B. do Ó, Semilinear Dirichlet problems for the $N$-Laplacian in $\bf R^N$ with nonlinearities in the critical growth range, Differential Integral Equations, 9 (1996), 967-979. 

[11] Y. Jabri, The Mountain Pass Theorem, Variant, Generalizations and some Applications, Encyclopedia of Mathematics and its Applications, 95, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511546655.
[12]

A. Kufner, Weighted Sobolev Spaces, Wiley, Hoboken, 1985.

[13]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092.  doi: 10.1512/iumj.1971.20.20101.

[14]

V. H. Nguyen, Remarks on the Moser-Trudinger type inequality with logarithmic weights in dimension $N$, Proc. Amer. Math. Soc., 147 (2019), 5183-5193.  doi: 10.1090/proc/14566.

[15]

P. Roy, On attainability of Moser-Trudinger inequality with logarithmic weights in higher dimensions, Discrete Contin. Dyn. Syst., 39 (2019), 5207-5222.  doi: 10.3934/dcds.2019212.

[16]

N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483.  doi: 10.1512/iumj.1968.17.17028.

[17]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.

show all references

References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.

[2]

L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal., 19 (1992), 581-597.  doi: 10.1016/0362-546X(92)90023-8.

[3]

M. Calanchi, Some weighted inequalities of Trudinger-Moser type, in: Progress in Nonlinear Differential Equations and Appl., Birkhäuser, 85 (2014), 163–174.

[4]

M. CalanchiE. Massa and B. Ruf, Weighted Trudinger-Moser inequalities and associated Liouville type equations, Proc. Amer. Math. Soc., 146 (2018), 5243-5256.  doi: 10.1090/proc/14189.

[5]

M. Calanchi and B. Ruf, On Trudinger-Moser type inequalities with logarithmic weights, J. Differ. Equ., 258 (2015), 1967-1989.  doi: 10.1016/j.jde.2014.11.019.

[6]

M. Calanchi and B. Ruf, Trudinger-Moser type inequalities with logarithmic weights in dimension $N$, Nonlinear Anal., 121 (2015), 403-411.  doi: 10.1016/j.na.2015.02.001.

[7]

M. Calanchi, B. Ruf and F. Sani, Elliptic equations in dimension 2 with double exponential nonlinearities, NoDEA Nonlinear Differential Equations Appl., 24 (2017), 29, 18 pp. doi: 10.1007/s00030-017-0453-y.

[8]

D. G. de FigueiredoO. H. Miyagaki and B. Ruf, Elliptic equations in $R^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.  doi: 10.1007/BF01205003.

[9]

S. Deng, Existence of solutions for some weighted mean field equations in dimension $N$, Appl. Math. Lett., 100 (2020), 106010, 7 pp. doi: 10.1016/j.aml.2019.106010.

[10]

J. M. B. do Ó, Semilinear Dirichlet problems for the $N$-Laplacian in $\bf R^N$ with nonlinearities in the critical growth range, Differential Integral Equations, 9 (1996), 967-979. 

[11] Y. Jabri, The Mountain Pass Theorem, Variant, Generalizations and some Applications, Encyclopedia of Mathematics and its Applications, 95, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511546655.
[12]

A. Kufner, Weighted Sobolev Spaces, Wiley, Hoboken, 1985.

[13]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092.  doi: 10.1512/iumj.1971.20.20101.

[14]

V. H. Nguyen, Remarks on the Moser-Trudinger type inequality with logarithmic weights in dimension $N$, Proc. Amer. Math. Soc., 147 (2019), 5183-5193.  doi: 10.1090/proc/14566.

[15]

P. Roy, On attainability of Moser-Trudinger inequality with logarithmic weights in higher dimensions, Discrete Contin. Dyn. Syst., 39 (2019), 5207-5222.  doi: 10.3934/dcds.2019212.

[16]

N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483.  doi: 10.1512/iumj.1968.17.17028.

[17]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.

[1]

Changliang Zhou, Chunqin Zhou. On the anisotropic Moser-Trudinger inequality for unbounded domains in $ \mathbb R^{n} $. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 847-881. doi: 10.3934/dcds.2020064

[2]

Yamin Wang. On nonexistence of extremals for the Trudinger-Moser functionals involving $ L^p $ norms. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4257-4268. doi: 10.3934/cpaa.2020191

[3]

Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure and Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011

[4]

Djairo G. De Figueiredo, João Marcos do Ó, Bernhard Ruf. Elliptic equations and systems with critical Trudinger-Moser nonlinearities. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 455-476. doi: 10.3934/dcds.2011.30.455

[5]

Xin-Guang Yang, Marcelo J. D. Nascimento, Maurício L. Pelicer. Uniform attractors for non-autonomous plate equations with $ p $-Laplacian perturbation and critical nonlinearities. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1937-1961. doi: 10.3934/dcds.2020100

[6]

Kyril Tintarev. Is the Trudinger-Moser nonlinearity a true critical nonlinearity?. Conference Publications, 2011, 2011 (Special) : 1378-1384. doi: 10.3934/proc.2011.2011.1378

[7]

Xiaobao Zhu. Remarks on singular trudinger-moser type inequalities. Communications on Pure and Applied Analysis, 2020, 19 (1) : 103-112. doi: 10.3934/cpaa.2020006

[8]

Tomasz Cieślak. Trudinger-Moser type inequality for radially symmetric functions in a ring and applications to Keller-Segel in a ring. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2505-2512. doi: 10.3934/dcdsb.2013.18.2505

[9]

Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062

[10]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1747-1756. doi: 10.3934/dcdss.2020452

[11]

Yong Xia, Ruey-Lin Sheu, Shu-Cherng Fang, Wenxun Xing. Double well potential function and its optimization in the $N$ -dimensional real space-part Ⅱ. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1307-1328. doi: 10.3934/jimo.2016074

[12]

Shu-Cherng Fang, David Y. Gao, Gang-Xuan Lin, Ruey-Lin Sheu, Wenxun Xing. Double well potential function and its optimization in the $N$ -dimensional real space-part Ⅰ. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1291-1305. doi: 10.3934/jimo.2016073

[13]

Genghong Lin, Zhan Zhou. Homoclinic solutions of discrete $ \phi $-Laplacian equations with mixed nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1723-1747. doi: 10.3934/cpaa.2018082

[14]

Shengbing Deng, Xingliang Tian. On a nonhomogeneous Kirchhoff type elliptic system with the singular Trudinger-Moser growth. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022071

[15]

Junyong Eom, Ryuichi Sato. Large time behavior of ODE type solutions to parabolic $ p $-Laplacian type equations. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4373-4386. doi: 10.3934/cpaa.2020199

[16]

Yao Du, Jiabao Su, Cong Wang. On the critical Schrödinger-Poisson system with $ p $-Laplacian. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1329-1342. doi: 10.3934/cpaa.2022020

[17]

Fengshuang Gao, Yuxia Guo. Infinitely many solutions for quasilinear equations with critical exponent and Hardy potential in $ \mathbb{R}^N $. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5591-5616. doi: 10.3934/dcds.2020239

[18]

Yaotian Shen, Youjun Wang. Degenerate coercive quasilinear elliptic equations with subcritical or critical exponents in $ \mathbb{R}^N $. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4667-4697. doi: 10.3934/cpaa.2020197

[19]

Laura Baldelli, Roberta Filippucci. Singular quasilinear critical Schrödinger equations in $ \mathbb {R}^N $. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2561-2586. doi: 10.3934/cpaa.2022060

[20]

Peng Mei, Zhan Zhou, Genghong Lin. Periodic and subharmonic solutions for a 2$n$th-order $\phi_c$-Laplacian difference equation containing both advances and retardations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2085-2095. doi: 10.3934/dcdss.2019134

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (298)
  • HTML views (213)
  • Cited by (0)

Other articles
by authors

[Back to Top]