February  2021, 41(2): 987-1003. doi: 10.3934/dcds.2020306

$ N- $Laplacian problems with critical double exponential nonlinearities

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

* Corresponding author: Chun-Lei Tang

Received  September 2019 Revised  December 2019 Published  August 2020

Fund Project: The research was supported by National Nature Science Foundation of China (11971392, 11971393 and 11901473), Natural Science Foundation of Chongqing, China cstc2019jcyjjqX0022 and Fundamental Research Funds for the Central Universities XDJK2019TY001

In this paper, we prove the existence of a nontrivial solution for the following boundary value problem
$ \left\{ {\begin{array}{*{20}{l}}{ - {\rm{div}}(\omega (x)|\nabla u(x){|^{N - 2}}\nabla u(x)) = f(x,u),\;\;\quad }&{\;\;\;\;\;{\rm{in}}\;B;}\\{u = 0,\;\;\quad }&{\;\;\;\;\;{\rm{on}}\;\partial B,}\end{array}} \right.{\rm{ }}\;\;\;\;\;\;\;\left( 1 \right)$
where
$ B $
is the unit ball in
$ \mathbb{R}^N $
,
$ N\geq 2 $
, the radial positive weight
$ \omega(x) $
is of logarithmic type, the function
$ f(x,u) $
is continuous in
$ B\times\mathbb{R} $
and has critical double exponential growth, which behaves like
$ \exp\{e^{\alpha |u|^{\frac{N}{N-1}}}\} $
as
$ |u|\to\infty $
for some
$ \alpha>0 $
.
Citation: Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306
References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal., 19 (1992), 581-597.  doi: 10.1016/0362-546X(92)90023-8.  Google Scholar

[3]

M. Calanchi, Some weighted inequalities of Trudinger-Moser type, in: Progress in Nonlinear Differential Equations and Appl., Birkhäuser, 85 (2014), 163–174.  Google Scholar

[4]

M. CalanchiE. Massa and B. Ruf, Weighted Trudinger-Moser inequalities and associated Liouville type equations, Proc. Amer. Math. Soc., 146 (2018), 5243-5256.  doi: 10.1090/proc/14189.  Google Scholar

[5]

M. Calanchi and B. Ruf, On Trudinger-Moser type inequalities with logarithmic weights, J. Differ. Equ., 258 (2015), 1967-1989.  doi: 10.1016/j.jde.2014.11.019.  Google Scholar

[6]

M. Calanchi and B. Ruf, Trudinger-Moser type inequalities with logarithmic weights in dimension $N$, Nonlinear Anal., 121 (2015), 403-411.  doi: 10.1016/j.na.2015.02.001.  Google Scholar

[7]

M. Calanchi, B. Ruf and F. Sani, Elliptic equations in dimension 2 with double exponential nonlinearities, NoDEA Nonlinear Differential Equations Appl., 24 (2017), 29, 18 pp. doi: 10.1007/s00030-017-0453-y.  Google Scholar

[8]

D. G. de FigueiredoO. H. Miyagaki and B. Ruf, Elliptic equations in $R^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.  doi: 10.1007/BF01205003.  Google Scholar

[9]

S. Deng, Existence of solutions for some weighted mean field equations in dimension $N$, Appl. Math. Lett., 100 (2020), 106010, 7 pp. doi: 10.1016/j.aml.2019.106010.  Google Scholar

[10]

J. M. B. do Ó, Semilinear Dirichlet problems for the $N$-Laplacian in $\bf R^N$ with nonlinearities in the critical growth range, Differential Integral Equations, 9 (1996), 967-979.   Google Scholar

[11] Y. Jabri, The Mountain Pass Theorem, Variant, Generalizations and some Applications, Encyclopedia of Mathematics and its Applications, 95, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511546655.  Google Scholar
[12]

A. Kufner, Weighted Sobolev Spaces, Wiley, Hoboken, 1985. Google Scholar

[13]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092.  doi: 10.1512/iumj.1971.20.20101.  Google Scholar

[14]

V. H. Nguyen, Remarks on the Moser-Trudinger type inequality with logarithmic weights in dimension $N$, Proc. Amer. Math. Soc., 147 (2019), 5183-5193.  doi: 10.1090/proc/14566.  Google Scholar

[15]

P. Roy, On attainability of Moser-Trudinger inequality with logarithmic weights in higher dimensions, Discrete Contin. Dyn. Syst., 39 (2019), 5207-5222.  doi: 10.3934/dcds.2019212.  Google Scholar

[16]

N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483.  doi: 10.1512/iumj.1968.17.17028.  Google Scholar

[17]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

show all references

References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal., 19 (1992), 581-597.  doi: 10.1016/0362-546X(92)90023-8.  Google Scholar

[3]

M. Calanchi, Some weighted inequalities of Trudinger-Moser type, in: Progress in Nonlinear Differential Equations and Appl., Birkhäuser, 85 (2014), 163–174.  Google Scholar

[4]

M. CalanchiE. Massa and B. Ruf, Weighted Trudinger-Moser inequalities and associated Liouville type equations, Proc. Amer. Math. Soc., 146 (2018), 5243-5256.  doi: 10.1090/proc/14189.  Google Scholar

[5]

M. Calanchi and B. Ruf, On Trudinger-Moser type inequalities with logarithmic weights, J. Differ. Equ., 258 (2015), 1967-1989.  doi: 10.1016/j.jde.2014.11.019.  Google Scholar

[6]

M. Calanchi and B. Ruf, Trudinger-Moser type inequalities with logarithmic weights in dimension $N$, Nonlinear Anal., 121 (2015), 403-411.  doi: 10.1016/j.na.2015.02.001.  Google Scholar

[7]

M. Calanchi, B. Ruf and F. Sani, Elliptic equations in dimension 2 with double exponential nonlinearities, NoDEA Nonlinear Differential Equations Appl., 24 (2017), 29, 18 pp. doi: 10.1007/s00030-017-0453-y.  Google Scholar

[8]

D. G. de FigueiredoO. H. Miyagaki and B. Ruf, Elliptic equations in $R^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.  doi: 10.1007/BF01205003.  Google Scholar

[9]

S. Deng, Existence of solutions for some weighted mean field equations in dimension $N$, Appl. Math. Lett., 100 (2020), 106010, 7 pp. doi: 10.1016/j.aml.2019.106010.  Google Scholar

[10]

J. M. B. do Ó, Semilinear Dirichlet problems for the $N$-Laplacian in $\bf R^N$ with nonlinearities in the critical growth range, Differential Integral Equations, 9 (1996), 967-979.   Google Scholar

[11] Y. Jabri, The Mountain Pass Theorem, Variant, Generalizations and some Applications, Encyclopedia of Mathematics and its Applications, 95, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511546655.  Google Scholar
[12]

A. Kufner, Weighted Sobolev Spaces, Wiley, Hoboken, 1985. Google Scholar

[13]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092.  doi: 10.1512/iumj.1971.20.20101.  Google Scholar

[14]

V. H. Nguyen, Remarks on the Moser-Trudinger type inequality with logarithmic weights in dimension $N$, Proc. Amer. Math. Soc., 147 (2019), 5183-5193.  doi: 10.1090/proc/14566.  Google Scholar

[15]

P. Roy, On attainability of Moser-Trudinger inequality with logarithmic weights in higher dimensions, Discrete Contin. Dyn. Syst., 39 (2019), 5207-5222.  doi: 10.3934/dcds.2019212.  Google Scholar

[16]

N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483.  doi: 10.1512/iumj.1968.17.17028.  Google Scholar

[17]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[1]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[2]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[3]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[4]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[5]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[6]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[7]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[8]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[9]

Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030

[10]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293

[11]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

[12]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[13]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[14]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[15]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[16]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[17]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[18]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[19]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228

[20]

Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (120)
  • HTML views (196)
  • Cited by (0)

Other articles
by authors

[Back to Top]