- Previous Article
- DCDS Home
- This Issue
-
Next Article
$ N- $Laplacian problems with critical double exponential nonlinearities
Recoding Lie algebraic subshifts
Department of Mathematics and Statistics, University of Turku, Turku, Finland |
We study internal Lie algebras in the category of subshifts on a fixed group – or Lie algebraic subshifts for short. We show that if the acting group is virtually polycyclic and the underlying vector space has dense homoclinic points, such subshifts can be recoded to have a cellwise Lie bracket. On the other hand there exist Lie algebraic subshifts (on any finitely-generated non-torsion group) with cellwise vector space operations whose bracket cannot be recoded to be cellwise. We also show that one-dimensional full vector shifts with cellwise vector space operations can support infinitely many compatible Lie brackets even up to automorphisms of the underlying vector shift, and we state the classification problem of such brackets.
From attempts to generalize these results to other acting groups, the following questions arise: Does every f.g. group admit a linear cellular automaton of infinite order? Which groups admit abelian group shifts whose homoclinic group is not generated by finitely many orbits? For the first question, we show that the Grigorchuk group admits such a CA, and for the second we show that the lamplighter group admits such group shifts.
References:
[1] |
S. Barbieri, R. Gómez, B. Marcus and S. Taati,
Equivalence of relative Gibbs and relative equilibrium measures for actions of countable amenable groups, Nonlinearity, 33 (2020), 2409-2454.
doi: 10.1088/1361-6544/ab6a75. |
[2] |
S. Barbieri, F. García-Ramos and H. Li, Markovian properties of continuous group actions: Algebraic actions, entropy and the homoclinic group, preprint, arXiv: 1911.00785. Google Scholar |
[3] |
F. Blanchard and Y. Lacroix,
Zero entropy factors of topological flows, Proc. Amer. Math. Soc., 119 (1993), 985-992.
doi: 10.1090/S0002-9939-1993-1155593-2. |
[4] |
M. Boyle and M. Schraudner,
$\Bbb Z^d$ group shifts and {B}ernoulli factors, Ergodic Theory Dynam. Systems, 28 (2008), 367-387.
doi: 10.1017/S0143385707000697. |
[5] |
S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, vol. 78 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1981. |
[6] |
N.-P. Chung and H. Li,
Homoclinic groups, IE groups, and expansive algebraic actions, Invent. Math., 199 (2015), 805-858.
doi: 10.1007/s00222-014-0524-1. |
[7] |
R. I. Grigorchuk,
Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat., 48 (1984), 939-985.
|
[8] |
P. Hall,
Finiteness conditions for soluble groups, Proc. London Math. Soc., 3 (1954), 419-436.
doi: 10.1112/plms/s3-4.1.419. |
[9] |
D. Kerr and H. Li,
Combinatorial independence and sofic entropy, Commun. Math. Stat., 1 (2013), 213-257.
doi: 10.1007/s40304-013-0001-y. |
[10] |
D. Kerr and H. Li, Ergodic Theory, Springer Monographs in Mathematics, Springer, Cham, 2016.
doi: 10.1007/978-3-319-49847-8. |
[11] |
B. P. Kitchens,
Expansive dynamics on zero-dimensional groups, Ergodic Theory Dyn. Syst., 7 (1987), 249-261.
doi: 10.1017/S0143385700003989. |
[12] |
S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathematics, Vol. 5. Springer-Verlag, New York, 1998. |
[13] |
B. Malman, Zero-divisors and Idempotents in Group Rings, Master's thesis, Lund University, 2014. Google Scholar |
[14] |
N. Matte Bon,
Topological full groups of minimal subshifts with subgroups of intermediate growth, J. Mod. Dyn., 9 (2015), 67-80.
doi: 10.3934/jmd.2015.9.67. |
[15] |
T. Meyerovitch,
Pseudo-orbit tracing and algebraic actions of countable amenable groups, Ergodic Theory Dynam. Systems, 39 (2019), 2570-2591.
doi: 10.1017/etds.2017.126. |
[16] |
V. Salo, Subshifts with Simple Cellular Automata, PhD thesis, University of Turku, 2014. Google Scholar |
[17] |
V. Salo, Universal groups of cellular automata, preprint, arXiv: 1808.08697. Google Scholar |
[18] |
V. Salo, When are group shifts of finite type?, preprint, arXiv: 1807.01951. Google Scholar |
[19] |
V. Salo and I. Törmä, On shift spaces with algebraic structure, in How the World Computes, Lecture Notes in Comput. Sci., Springer, Heidelberg, 7318 (2012), 636–645.
doi: 10.1007/978-3-642-30870-3_64. |
[20] |
V. Salo and I. Törmä,
Category Theory of Symbolic Dynamics, Theoret. Comput. Sci., 567 (2015), 21-45.
doi: 10.1016/j.tcs.2014.10.023. |
[21] |
K. Schmidt, Dynamical Systems of Algebraic Origin, Progress in Mathematics, 128. Birkhäuser Verlag, Basel, 1995.
doi: 10.1007/978-3-0348-0277-2. |
show all references
References:
[1] |
S. Barbieri, R. Gómez, B. Marcus and S. Taati,
Equivalence of relative Gibbs and relative equilibrium measures for actions of countable amenable groups, Nonlinearity, 33 (2020), 2409-2454.
doi: 10.1088/1361-6544/ab6a75. |
[2] |
S. Barbieri, F. García-Ramos and H. Li, Markovian properties of continuous group actions: Algebraic actions, entropy and the homoclinic group, preprint, arXiv: 1911.00785. Google Scholar |
[3] |
F. Blanchard and Y. Lacroix,
Zero entropy factors of topological flows, Proc. Amer. Math. Soc., 119 (1993), 985-992.
doi: 10.1090/S0002-9939-1993-1155593-2. |
[4] |
M. Boyle and M. Schraudner,
$\Bbb Z^d$ group shifts and {B}ernoulli factors, Ergodic Theory Dynam. Systems, 28 (2008), 367-387.
doi: 10.1017/S0143385707000697. |
[5] |
S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, vol. 78 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1981. |
[6] |
N.-P. Chung and H. Li,
Homoclinic groups, IE groups, and expansive algebraic actions, Invent. Math., 199 (2015), 805-858.
doi: 10.1007/s00222-014-0524-1. |
[7] |
R. I. Grigorchuk,
Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat., 48 (1984), 939-985.
|
[8] |
P. Hall,
Finiteness conditions for soluble groups, Proc. London Math. Soc., 3 (1954), 419-436.
doi: 10.1112/plms/s3-4.1.419. |
[9] |
D. Kerr and H. Li,
Combinatorial independence and sofic entropy, Commun. Math. Stat., 1 (2013), 213-257.
doi: 10.1007/s40304-013-0001-y. |
[10] |
D. Kerr and H. Li, Ergodic Theory, Springer Monographs in Mathematics, Springer, Cham, 2016.
doi: 10.1007/978-3-319-49847-8. |
[11] |
B. P. Kitchens,
Expansive dynamics on zero-dimensional groups, Ergodic Theory Dyn. Syst., 7 (1987), 249-261.
doi: 10.1017/S0143385700003989. |
[12] |
S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathematics, Vol. 5. Springer-Verlag, New York, 1998. |
[13] |
B. Malman, Zero-divisors and Idempotents in Group Rings, Master's thesis, Lund University, 2014. Google Scholar |
[14] |
N. Matte Bon,
Topological full groups of minimal subshifts with subgroups of intermediate growth, J. Mod. Dyn., 9 (2015), 67-80.
doi: 10.3934/jmd.2015.9.67. |
[15] |
T. Meyerovitch,
Pseudo-orbit tracing and algebraic actions of countable amenable groups, Ergodic Theory Dynam. Systems, 39 (2019), 2570-2591.
doi: 10.1017/etds.2017.126. |
[16] |
V. Salo, Subshifts with Simple Cellular Automata, PhD thesis, University of Turku, 2014. Google Scholar |
[17] |
V. Salo, Universal groups of cellular automata, preprint, arXiv: 1808.08697. Google Scholar |
[18] |
V. Salo, When are group shifts of finite type?, preprint, arXiv: 1807.01951. Google Scholar |
[19] |
V. Salo and I. Törmä, On shift spaces with algebraic structure, in How the World Computes, Lecture Notes in Comput. Sci., Springer, Heidelberg, 7318 (2012), 636–645.
doi: 10.1007/978-3-642-30870-3_64. |
[20] |
V. Salo and I. Törmä,
Category Theory of Symbolic Dynamics, Theoret. Comput. Sci., 567 (2015), 21-45.
doi: 10.1016/j.tcs.2014.10.023. |
[21] |
K. Schmidt, Dynamical Systems of Algebraic Origin, Progress in Mathematics, 128. Birkhäuser Verlag, Basel, 1995.
doi: 10.1007/978-3-0348-0277-2. |
[1] |
Hongliang Chang, Yin Chen, Runxuan Zhang. A generalization on derivations of Lie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2020124 |
[2] |
Dandan Cheng, Qian Hao, Zhiming Li. Scale pressure for amenable group actions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021008 |
[3] |
Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269 |
[4] |
Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320 |
[5] |
Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, , () : -. doi: 10.3934/era.2021001 |
[6] |
Yongjie Wang, Nan Gao. Some properties for almost cellular algebras. Electronic Research Archive, 2021, 29 (1) : 1681-1689. doi: 10.3934/era.2020086 |
[7] |
Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139 |
[8] |
Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020381 |
[9] |
Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278 |
[10] |
Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350 |
[11] |
Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020464 |
[12] |
Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108 |
[13] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[14] |
Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021010 |
[15] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[16] |
Bing Sun, Liangyun Chen, Yan Cao. On the universal $ \alpha $-central extensions of the semi-direct product of Hom-preLie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021004 |
[17] |
Kengo Matsumoto. $ C^* $-algebras associated with asymptotic equivalence relations defined by hyperbolic toral automorphisms. Electronic Research Archive, , () : -. doi: 10.3934/era.2021006 |
[18] |
Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123 |
[19] |
Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, , () : -. doi: 10.3934/era.2021008 |
[20] |
Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041 |
2019 Impact Factor: 1.338
Tools
Article outline
[Back to Top]