-
Previous Article
Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials
- DCDS Home
- This Issue
-
Next Article
Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation
Pomeau-Manneville maps are global-local mixing
1. | Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy |
2. | Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy, and, Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Via Irnerio 46, 40126 Bologna, Italy |
We prove that a large class of expanding maps of the unit interval with a $ C^2 $-regular indifferent fixed point in 0 and full increasing branches are global-local mixing. This class includes the standard Pomeau-Manneville maps $ T(x) = x + x^{p+1} $ mod 1 ($ p \ge 1 $), the Liverani-Saussol-Vaienti maps (with index $ p \ge 1 $) and many generalizations thereof.
References:
[1] |
C. Bonanno, P. Giulietti and M. Lenci,
Global-local mixing for the Boole map, Chaos Solitons Fractals, 111 (2018), 55-61.
doi: 10.1016/j.chaos.2018.03.020. |
[2] |
C. Bonanno, P. Giulietti and M. Lenci,
Infinite mixing for one-dimensional maps with an indifferent fixed point, Nonlinearity, 31 (2018), 5180-5213.
doi: 10.1088/1361-6544/aadc04. |
[3] |
D. Dolgopyat and P. Nándori, Infinite measure mixing for some mechanical systems, preprint, arXiv: 1812.01174. |
[4] |
P. Giulietti, A. Hammerlindl and D. Ravotti, Quantitative global-local mixing mixing for accessible skew products, preprint, arXiv: 2006.06539. |
[5] |
M. Lenci,
On infinite-volume mixing, Comm. Math. Phys., 298 (2010), 485-514.
doi: 10.1007/s00220-010-1043-6. |
[6] |
M. Lenci,
Exactness, K-property and infinite mixing, Publ. Mat. Urug., 14 (2013), 159-170.
|
[7] |
M. Lenci,
Uniformly expanding Markov maps of the real line: Exactness and infinite mixing, Discrete Contin. Dyn. Syst., 37 (2017), 3867-3903.
doi: 10.3934/dcds.2017163. |
[8] |
M. Lin,
Mixing for Markov operators, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 19 (1971), 231-242.
doi: 10.1007/BF00534111. |
[9] |
C. Liverani, B. Saussol and S. Vaienti,
A probabilistic approach to intermittency, Ergodic Theory Dynam. Systems, 19 (1999), 671-685.
doi: 10.1017/S0143385799133856. |
[10] |
P. Manneville,
Intermittency, self-similarity and $1/f$ spectrum in dissipative dynamical systems, J. Physique, 41 (1980), 1235-1243.
doi: 10.1051/jphys:0198000410110123500. |
[11] |
Y. Pomeau and P. Manneville,
Intermittent transition to turbulence in dissipative dynamical systems, Comm. Math. Phys., 74 (1980), 189-197.
doi: 10.1007/BF01197757. |
[12] |
M. Thaler,
Estimates of the invariant densities of endomorphisms with indifferent fixed points, Israel J. Math., 37 (1980), 303-314.
doi: 10.1007/BF02788928. |
[13] |
M. Thaler,
Transformations on $[0,\,1]$ with infinite invariant measures, Israel J. Math., 46 (1983), 67-96.
doi: 10.1007/BF02760623. |
[14] |
M. Thaler, Infinite ergodic theory. Examples: One-dimensional maps with indifferent fixed points, Course Notes, Marseille, 2001. Available at http://www.uni-salzburg.at/fileadmin/oracle\_file\_imports/1543201.PDF. |
show all references
References:
[1] |
C. Bonanno, P. Giulietti and M. Lenci,
Global-local mixing for the Boole map, Chaos Solitons Fractals, 111 (2018), 55-61.
doi: 10.1016/j.chaos.2018.03.020. |
[2] |
C. Bonanno, P. Giulietti and M. Lenci,
Infinite mixing for one-dimensional maps with an indifferent fixed point, Nonlinearity, 31 (2018), 5180-5213.
doi: 10.1088/1361-6544/aadc04. |
[3] |
D. Dolgopyat and P. Nándori, Infinite measure mixing for some mechanical systems, preprint, arXiv: 1812.01174. |
[4] |
P. Giulietti, A. Hammerlindl and D. Ravotti, Quantitative global-local mixing mixing for accessible skew products, preprint, arXiv: 2006.06539. |
[5] |
M. Lenci,
On infinite-volume mixing, Comm. Math. Phys., 298 (2010), 485-514.
doi: 10.1007/s00220-010-1043-6. |
[6] |
M. Lenci,
Exactness, K-property and infinite mixing, Publ. Mat. Urug., 14 (2013), 159-170.
|
[7] |
M. Lenci,
Uniformly expanding Markov maps of the real line: Exactness and infinite mixing, Discrete Contin. Dyn. Syst., 37 (2017), 3867-3903.
doi: 10.3934/dcds.2017163. |
[8] |
M. Lin,
Mixing for Markov operators, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 19 (1971), 231-242.
doi: 10.1007/BF00534111. |
[9] |
C. Liverani, B. Saussol and S. Vaienti,
A probabilistic approach to intermittency, Ergodic Theory Dynam. Systems, 19 (1999), 671-685.
doi: 10.1017/S0143385799133856. |
[10] |
P. Manneville,
Intermittency, self-similarity and $1/f$ spectrum in dissipative dynamical systems, J. Physique, 41 (1980), 1235-1243.
doi: 10.1051/jphys:0198000410110123500. |
[11] |
Y. Pomeau and P. Manneville,
Intermittent transition to turbulence in dissipative dynamical systems, Comm. Math. Phys., 74 (1980), 189-197.
doi: 10.1007/BF01197757. |
[12] |
M. Thaler,
Estimates of the invariant densities of endomorphisms with indifferent fixed points, Israel J. Math., 37 (1980), 303-314.
doi: 10.1007/BF02788928. |
[13] |
M. Thaler,
Transformations on $[0,\,1]$ with infinite invariant measures, Israel J. Math., 46 (1983), 67-96.
doi: 10.1007/BF02760623. |
[14] |
M. Thaler, Infinite ergodic theory. Examples: One-dimensional maps with indifferent fixed points, Course Notes, Marseille, 2001. Available at http://www.uni-salzburg.at/fileadmin/oracle\_file\_imports/1543201.PDF. |
[1] |
Roland Zweimüller. Asymptotic orbit complexity of infinite measure preserving transformations. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 353-366. doi: 10.3934/dcds.2006.15.353 |
[2] |
S. Eigen, A. B. Hajian, V. S. Prasad. Universal skyscraper templates for infinite measure preserving transformations. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 343-360. doi: 10.3934/dcds.2006.16.343 |
[3] |
Marco Lenci. Uniformly expanding Markov maps of the real line: Exactness and infinite mixing. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3867-3903. doi: 10.3934/dcds.2017163 |
[4] |
Nasab Yassine. Quantitative recurrence of some dynamical systems preserving an infinite measure in dimension one. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 343-361. doi: 10.3934/dcds.2018017 |
[5] |
Ian Melbourne, Dalia Terhesiu. Mixing properties for toral extensions of slowly mixing dynamical systems with finite and infinite measure. Journal of Modern Dynamics, 2018, 12: 285-313. doi: 10.3934/jmd.2018011 |
[6] |
Rui Kuang, Xiangdong Ye. The return times set and mixing for measure preserving transformations. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 817-827. doi: 10.3934/dcds.2007.18.817 |
[7] |
Zhihong Xia, Peizheng Yu. A fixed point theorem for twist maps. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022045 |
[8] |
H. E. Lomelí, J. D. Meiss. Generating forms for exact volume-preserving maps. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 361-377. doi: 10.3934/dcdss.2009.2.361 |
[9] |
Roland Gunesch, Anatole Katok. Construction of weakly mixing diffeomorphisms preserving measurable Riemannian metric and smooth measure. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 61-88. doi: 10.3934/dcds.2000.6.61 |
[10] |
Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017 |
[11] |
Luis Hernández-Corbato, Francisco R. Ruiz del Portal. Fixed point indices of planar continuous maps. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2979-2995. doi: 10.3934/dcds.2015.35.2979 |
[12] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
[13] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[14] |
Rafael de la Llave, Jason D. Mireles James. Parameterization of invariant manifolds by reducibility for volume preserving and symplectic maps. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4321-4360. doi: 10.3934/dcds.2012.32.4321 |
[15] |
Robert Carlson. Dirichlet to Neumann maps for infinite quantum graphs. Networks and Heterogeneous Media, 2012, 7 (3) : 483-501. doi: 10.3934/nhm.2012.7.483 |
[16] |
Teck-Cheong Lim. On the largest common fixed point of a commuting family of isotone maps. Conference Publications, 2005, 2005 (Special) : 621-623. doi: 10.3934/proc.2005.2005.621 |
[17] |
Romain Aimino, Huyi Hu, Matthew Nicol, Andrei Török, Sandro Vaienti. Polynomial loss of memory for maps of the interval with a neutral fixed point. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 793-806. doi: 10.3934/dcds.2015.35.793 |
[18] |
Grzegorz Graff, Piotr Nowak-Przygodzki. Fixed point indices of iterations of $C^1$ maps in $R^3$. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 843-856. doi: 10.3934/dcds.2006.16.843 |
[19] |
Simeon Reich, Alexander J. Zaslavski. Convergence of generic infinite products of homogeneous order-preserving mappings. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 929-945. doi: 10.3934/dcds.1999.5.929 |
[20] |
Gang Li, Xianwen Zhang. A Vlasov-Poisson plasma of infinite mass with a point charge. Kinetic and Related Models, 2018, 11 (2) : 303-336. doi: 10.3934/krm.2018015 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]