-
Previous Article
Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials
- DCDS Home
- This Issue
-
Next Article
Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation
Pomeau-Manneville maps are global-local mixing
1. | Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy |
2. | Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy, and, Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Via Irnerio 46, 40126 Bologna, Italy |
We prove that a large class of expanding maps of the unit interval with a $ C^2 $-regular indifferent fixed point in 0 and full increasing branches are global-local mixing. This class includes the standard Pomeau-Manneville maps $ T(x) = x + x^{p+1} $ mod 1 ($ p \ge 1 $), the Liverani-Saussol-Vaienti maps (with index $ p \ge 1 $) and many generalizations thereof.
References:
[1] |
C. Bonanno, P. Giulietti and M. Lenci,
Global-local mixing for the Boole map, Chaos Solitons Fractals, 111 (2018), 55-61.
doi: 10.1016/j.chaos.2018.03.020. |
[2] |
C. Bonanno, P. Giulietti and M. Lenci,
Infinite mixing for one-dimensional maps with an indifferent fixed point, Nonlinearity, 31 (2018), 5180-5213.
doi: 10.1088/1361-6544/aadc04. |
[3] |
D. Dolgopyat and P. Nándori, Infinite measure mixing for some mechanical systems, preprint, arXiv: 1812.01174. Google Scholar |
[4] |
P. Giulietti, A. Hammerlindl and D. Ravotti, Quantitative global-local mixing mixing for accessible skew products, preprint, arXiv: 2006.06539. Google Scholar |
[5] |
M. Lenci,
On infinite-volume mixing, Comm. Math. Phys., 298 (2010), 485-514.
doi: 10.1007/s00220-010-1043-6. |
[6] |
M. Lenci,
Exactness, K-property and infinite mixing, Publ. Mat. Urug., 14 (2013), 159-170.
|
[7] |
M. Lenci,
Uniformly expanding Markov maps of the real line: Exactness and infinite mixing, Discrete Contin. Dyn. Syst., 37 (2017), 3867-3903.
doi: 10.3934/dcds.2017163. |
[8] |
M. Lin,
Mixing for Markov operators, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 19 (1971), 231-242.
doi: 10.1007/BF00534111. |
[9] |
C. Liverani, B. Saussol and S. Vaienti,
A probabilistic approach to intermittency, Ergodic Theory Dynam. Systems, 19 (1999), 671-685.
doi: 10.1017/S0143385799133856. |
[10] |
P. Manneville,
Intermittency, self-similarity and $1/f$ spectrum in dissipative dynamical systems, J. Physique, 41 (1980), 1235-1243.
doi: 10.1051/jphys:0198000410110123500. |
[11] |
Y. Pomeau and P. Manneville,
Intermittent transition to turbulence in dissipative dynamical systems, Comm. Math. Phys., 74 (1980), 189-197.
doi: 10.1007/BF01197757. |
[12] |
M. Thaler,
Estimates of the invariant densities of endomorphisms with indifferent fixed points, Israel J. Math., 37 (1980), 303-314.
doi: 10.1007/BF02788928. |
[13] |
M. Thaler,
Transformations on $[0,\,1]$ with infinite invariant measures, Israel J. Math., 46 (1983), 67-96.
doi: 10.1007/BF02760623. |
[14] |
M. Thaler, Infinite ergodic theory. Examples: One-dimensional maps with indifferent fixed points, Course Notes, Marseille, 2001. Available at http://www.uni-salzburg.at/fileadmin/oracle\_file\_imports/1543201.PDF. Google Scholar |
show all references
References:
[1] |
C. Bonanno, P. Giulietti and M. Lenci,
Global-local mixing for the Boole map, Chaos Solitons Fractals, 111 (2018), 55-61.
doi: 10.1016/j.chaos.2018.03.020. |
[2] |
C. Bonanno, P. Giulietti and M. Lenci,
Infinite mixing for one-dimensional maps with an indifferent fixed point, Nonlinearity, 31 (2018), 5180-5213.
doi: 10.1088/1361-6544/aadc04. |
[3] |
D. Dolgopyat and P. Nándori, Infinite measure mixing for some mechanical systems, preprint, arXiv: 1812.01174. Google Scholar |
[4] |
P. Giulietti, A. Hammerlindl and D. Ravotti, Quantitative global-local mixing mixing for accessible skew products, preprint, arXiv: 2006.06539. Google Scholar |
[5] |
M. Lenci,
On infinite-volume mixing, Comm. Math. Phys., 298 (2010), 485-514.
doi: 10.1007/s00220-010-1043-6. |
[6] |
M. Lenci,
Exactness, K-property and infinite mixing, Publ. Mat. Urug., 14 (2013), 159-170.
|
[7] |
M. Lenci,
Uniformly expanding Markov maps of the real line: Exactness and infinite mixing, Discrete Contin. Dyn. Syst., 37 (2017), 3867-3903.
doi: 10.3934/dcds.2017163. |
[8] |
M. Lin,
Mixing for Markov operators, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 19 (1971), 231-242.
doi: 10.1007/BF00534111. |
[9] |
C. Liverani, B. Saussol and S. Vaienti,
A probabilistic approach to intermittency, Ergodic Theory Dynam. Systems, 19 (1999), 671-685.
doi: 10.1017/S0143385799133856. |
[10] |
P. Manneville,
Intermittency, self-similarity and $1/f$ spectrum in dissipative dynamical systems, J. Physique, 41 (1980), 1235-1243.
doi: 10.1051/jphys:0198000410110123500. |
[11] |
Y. Pomeau and P. Manneville,
Intermittent transition to turbulence in dissipative dynamical systems, Comm. Math. Phys., 74 (1980), 189-197.
doi: 10.1007/BF01197757. |
[12] |
M. Thaler,
Estimates of the invariant densities of endomorphisms with indifferent fixed points, Israel J. Math., 37 (1980), 303-314.
doi: 10.1007/BF02788928. |
[13] |
M. Thaler,
Transformations on $[0,\,1]$ with infinite invariant measures, Israel J. Math., 46 (1983), 67-96.
doi: 10.1007/BF02760623. |
[14] |
M. Thaler, Infinite ergodic theory. Examples: One-dimensional maps with indifferent fixed points, Course Notes, Marseille, 2001. Available at http://www.uni-salzburg.at/fileadmin/oracle\_file\_imports/1543201.PDF. Google Scholar |
[1] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[2] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[3] |
Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021012 |
[4] |
Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020404 |
[5] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[6] |
Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 |
[7] |
Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021001 |
[8] |
Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020178 |
[9] |
Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, , () : -. doi: 10.3934/era.2021001 |
[10] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020391 |
[11] |
Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 |
[12] |
Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 |
[13] |
Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129 |
[14] |
Luis Caffarelli, Fanghua Lin. Nonlocal heat flows preserving the L2 energy. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 49-64. doi: 10.3934/dcds.2009.23.49 |
[15] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020407 |
[16] |
Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008 |
[17] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[18] |
Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 |
[19] |
Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 |
[20] |
Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]