
-
Previous Article
Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity
- DCDS Home
- This Issue
-
Next Article
Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials
Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere
25/12 Bolshaya Pecherskaya Ulitsa, Nizhny Novgorod, 603155, Russian Federation |
In the present paper, a solution to the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere is obtained. It is precisely shown that with respect to the stable isotopic connectedness relation there exists countable many of equivalence classes of such systems. 43 words.
References:
[1] |
V. S. Afraimovich and L. P. Shilnikov, On some global bifurcations associated with the disappearance of a saddle-node fixed point, Doc. USSR Acad. Sci., 219 (1974), 1281-1284. Google Scholar |
[2] |
V. S. Afraimovich and L. P. Shilnikov, On small periodic disturbances of autonomous systems, Doc. USSR Acad. Sci., 214 (1974), 739-742. Google Scholar |
[3] |
A. Andronov and L. Pontryagin, Rough systems, Doklady Akademii Nauk SSSR, 14 (1937), 247-250. Google Scholar |
[4] |
A. Banyaga,
The structure of the group of equivariant diffeomorphism, Topology, 16 (1977), 279-283.
doi: 10.1016/0040-9383(77)90009-X. |
[5] |
A. N. Bezdenezhnykh and V. Z. Grines, Realization of gradient-like diffeomorphisms of two-dimensional manifolds, Differential Integral Equations, (1985), 33–37. |
[6] |
P. R. Blanchard,
Invariants of the NPT isotopy classes of Morse-Smale diffeomorphisms of surfaces, Duke Math. J., 47 (1980), 33-46.
doi: 10.1215/S0012-7094-80-04704-3. |
[7] |
S. K. Boldsen, Different versions of mapping class groups of surfaces, preprint, arXiv: 0908.2221. Google Scholar |
[8] |
Kh. Bonatti, V. Z. Grines, V. S. Medvedev and O. V. Pochinka,
Bifurcations of Morse-Smale diffeomorphisms with wildly embedded separatrices, Tr. Mat. Inst. Steklova, 256 (2007), 54-69.
doi: 10.1134/S0081543807010038. |
[9] |
G. Fleitas,
Replacing tangencies by saddle-nodes, Bol. Soc. Brasil. Mat., 8 (1977), 47-51.
doi: 10.1007/BF02584749. |
[10] |
J. Franks,
Necessary conditions for the stability of diffeomorphisms, Trans. A. M. S., 158 (1971), 301-308.
doi: 10.1090/S0002-9947-1971-0283812-3. |
[11] |
N. Gourmelon,
A Franks' lemma that preserves invariant manifolds, Ergodic Theory Dynam. Systems, 36 (2016), 1167-1203.
doi: 10.1017/etds.2014.101. |
[12] |
V. Grines, E. Gurevich, O. Pochinka and D. Malyshev, On topological classification of Morse-Smale diffeomorphisms on the sphere $S^n$, preprint, arXiv: 1911.10234. Google Scholar |
[13] |
V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev and O. V. Pochinka,
Global attractor and repeller of Morse–Smale diffeomorphisms, Proc. Steklov Inst. Math., 271 (2010), 103-124.
doi: 10.1134/S0081543810040097. |
[14] |
V. Z. Grines, T. V. Medvedev and O. V. Pochinka, Dynamical Systems on 2- and 3-Manifolds, Developments in Mathematics, 46, Springer, Cham, 2016.
doi: 10.1007/978-3-319-44847-3. |
[15] |
V. Z. Grines, O. V. Pochinka and S. Van Strien,
On 2-diffeomorphisms with one-dimensional basic sets and a finite number of moduli, Mosc. Math. J., 16 (2016), 727-749.
doi: 10.17323/1609-4514-2016-16-4-727-749. |
[16] |
F. Harary, Graph Theory, Addison-Wesley Publishing Co., Reading, Mass.-Menlo Park, Calif.-London, 1969. |
[17] |
M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-New York, 1977.
doi: 10.1007/BFb0092042. |
[18] |
B. von Kerékjártó,
Uber die periodischen Transformationen der Kreisscheibe und der Kugelfläche, Math. Ann., 80 (1919), 36-38.
doi: 10.1007/BF01463232. |
[19] |
V. I. Lukyanov and L. P. Shilnikov, On some bifurcations of dynamical systems with homoclinic structures, Doc. USSR Academy of Sciences, 243 (1978), 26-29. Google Scholar |
[20] |
A. G. Mayer, Rough transformation of a circle into a circle, Scientific Notes - Gorky State Univ., 12 (1939), 215-229. Google Scholar |
[21] |
T. V. Medvedev, E. V. Nozdrinova, O. V. Pochinka and E. V. Shadrina,
On a class of isotopic connectivity of gradient-like maps of the 2-sphere with saddles of negative orientation type, Russ. J. Nonlinear Dyn., 15 (2019), 199-211.
doi: 10.20537/nd190209. |
[22] |
J. Milnor, Lectures on the $h$-cobordism theorem, Princeton University Press, Princeton, NJ, 1965.
![]() |
[23] |
S. Newhouse, J. Palis and F. Takens, Bifurcations and stability of families of diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 57 (1983), 5–71. |
[24] |
S. Newhouse, J. Palis and F. Takens,
Stable arcs of diffeomorphisms, Bull. Amer. Math. Soc., 82 (1976), 499-502.
doi: 10.1090/S0002-9904-1976-14073-6. |
[25] |
S. Newhouse and M. M. Peixoto, There is a simple arc joining any two Morse-Smale flows, in Trois Études en Dynamique Qualitative, Astérisque, 31, Soc. Math. France, Paris, 1976, 15–41. |
[26] |
E. V. Nozdrinova,
Rotation number as a complete topological invariant of a simple isotopic class of rough transformations of a circle, Russ. J. Nonlinear Dyn., 14 (2018), 543-551.
doi: 10.20537/nd180408. |
[27] |
E. Nozdrinova and O. Pochinka,
On the existence of a smooth arc without bifurcations joining source-sink diffeomorphisms on the 2-sphere, J. Phys. Conf. Ser., 990 (2018), 1-7.
doi: 10.1088/1742-6596/990/1/012010. |
[28] |
J. Palis and C. Pugh, Fifty problems in dynamical systems, in Dynamical Systems, Lecture Notes in Math., 468, Springer, Berlin, 1975,345–353.
doi: 10.1007/BFb0082633. |
[29] |
D. Rolfsen, Knots and Links, Mathematics Lecture Series, 7, Publish or Perish, Inc., Houston, TX, 1990. |
[30] |
S. Smale,
Diffeomorphisms of the $2$-sphere, Proc. Amer. Math. Soc., 10 (1959), 621-626.
doi: 10.2307/2033664. |
[31] |
S. Smale,
Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.
doi: 10.1090/S0002-9904-1967-11798-1. |
show all references
References:
[1] |
V. S. Afraimovich and L. P. Shilnikov, On some global bifurcations associated with the disappearance of a saddle-node fixed point, Doc. USSR Acad. Sci., 219 (1974), 1281-1284. Google Scholar |
[2] |
V. S. Afraimovich and L. P. Shilnikov, On small periodic disturbances of autonomous systems, Doc. USSR Acad. Sci., 214 (1974), 739-742. Google Scholar |
[3] |
A. Andronov and L. Pontryagin, Rough systems, Doklady Akademii Nauk SSSR, 14 (1937), 247-250. Google Scholar |
[4] |
A. Banyaga,
The structure of the group of equivariant diffeomorphism, Topology, 16 (1977), 279-283.
doi: 10.1016/0040-9383(77)90009-X. |
[5] |
A. N. Bezdenezhnykh and V. Z. Grines, Realization of gradient-like diffeomorphisms of two-dimensional manifolds, Differential Integral Equations, (1985), 33–37. |
[6] |
P. R. Blanchard,
Invariants of the NPT isotopy classes of Morse-Smale diffeomorphisms of surfaces, Duke Math. J., 47 (1980), 33-46.
doi: 10.1215/S0012-7094-80-04704-3. |
[7] |
S. K. Boldsen, Different versions of mapping class groups of surfaces, preprint, arXiv: 0908.2221. Google Scholar |
[8] |
Kh. Bonatti, V. Z. Grines, V. S. Medvedev and O. V. Pochinka,
Bifurcations of Morse-Smale diffeomorphisms with wildly embedded separatrices, Tr. Mat. Inst. Steklova, 256 (2007), 54-69.
doi: 10.1134/S0081543807010038. |
[9] |
G. Fleitas,
Replacing tangencies by saddle-nodes, Bol. Soc. Brasil. Mat., 8 (1977), 47-51.
doi: 10.1007/BF02584749. |
[10] |
J. Franks,
Necessary conditions for the stability of diffeomorphisms, Trans. A. M. S., 158 (1971), 301-308.
doi: 10.1090/S0002-9947-1971-0283812-3. |
[11] |
N. Gourmelon,
A Franks' lemma that preserves invariant manifolds, Ergodic Theory Dynam. Systems, 36 (2016), 1167-1203.
doi: 10.1017/etds.2014.101. |
[12] |
V. Grines, E. Gurevich, O. Pochinka and D. Malyshev, On topological classification of Morse-Smale diffeomorphisms on the sphere $S^n$, preprint, arXiv: 1911.10234. Google Scholar |
[13] |
V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev and O. V. Pochinka,
Global attractor and repeller of Morse–Smale diffeomorphisms, Proc. Steklov Inst. Math., 271 (2010), 103-124.
doi: 10.1134/S0081543810040097. |
[14] |
V. Z. Grines, T. V. Medvedev and O. V. Pochinka, Dynamical Systems on 2- and 3-Manifolds, Developments in Mathematics, 46, Springer, Cham, 2016.
doi: 10.1007/978-3-319-44847-3. |
[15] |
V. Z. Grines, O. V. Pochinka and S. Van Strien,
On 2-diffeomorphisms with one-dimensional basic sets and a finite number of moduli, Mosc. Math. J., 16 (2016), 727-749.
doi: 10.17323/1609-4514-2016-16-4-727-749. |
[16] |
F. Harary, Graph Theory, Addison-Wesley Publishing Co., Reading, Mass.-Menlo Park, Calif.-London, 1969. |
[17] |
M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-New York, 1977.
doi: 10.1007/BFb0092042. |
[18] |
B. von Kerékjártó,
Uber die periodischen Transformationen der Kreisscheibe und der Kugelfläche, Math. Ann., 80 (1919), 36-38.
doi: 10.1007/BF01463232. |
[19] |
V. I. Lukyanov and L. P. Shilnikov, On some bifurcations of dynamical systems with homoclinic structures, Doc. USSR Academy of Sciences, 243 (1978), 26-29. Google Scholar |
[20] |
A. G. Mayer, Rough transformation of a circle into a circle, Scientific Notes - Gorky State Univ., 12 (1939), 215-229. Google Scholar |
[21] |
T. V. Medvedev, E. V. Nozdrinova, O. V. Pochinka and E. V. Shadrina,
On a class of isotopic connectivity of gradient-like maps of the 2-sphere with saddles of negative orientation type, Russ. J. Nonlinear Dyn., 15 (2019), 199-211.
doi: 10.20537/nd190209. |
[22] |
J. Milnor, Lectures on the $h$-cobordism theorem, Princeton University Press, Princeton, NJ, 1965.
![]() |
[23] |
S. Newhouse, J. Palis and F. Takens, Bifurcations and stability of families of diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 57 (1983), 5–71. |
[24] |
S. Newhouse, J. Palis and F. Takens,
Stable arcs of diffeomorphisms, Bull. Amer. Math. Soc., 82 (1976), 499-502.
doi: 10.1090/S0002-9904-1976-14073-6. |
[25] |
S. Newhouse and M. M. Peixoto, There is a simple arc joining any two Morse-Smale flows, in Trois Études en Dynamique Qualitative, Astérisque, 31, Soc. Math. France, Paris, 1976, 15–41. |
[26] |
E. V. Nozdrinova,
Rotation number as a complete topological invariant of a simple isotopic class of rough transformations of a circle, Russ. J. Nonlinear Dyn., 14 (2018), 543-551.
doi: 10.20537/nd180408. |
[27] |
E. Nozdrinova and O. Pochinka,
On the existence of a smooth arc without bifurcations joining source-sink diffeomorphisms on the 2-sphere, J. Phys. Conf. Ser., 990 (2018), 1-7.
doi: 10.1088/1742-6596/990/1/012010. |
[28] |
J. Palis and C. Pugh, Fifty problems in dynamical systems, in Dynamical Systems, Lecture Notes in Math., 468, Springer, Berlin, 1975,345–353.
doi: 10.1007/BFb0082633. |
[29] |
D. Rolfsen, Knots and Links, Mathematics Lecture Series, 7, Publish or Perish, Inc., Houston, TX, 1990. |
[30] |
S. Smale,
Diffeomorphisms of the $2$-sphere, Proc. Amer. Math. Soc., 10 (1959), 621-626.
doi: 10.2307/2033664. |
[31] |
S. Smale,
Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.
doi: 10.1090/S0002-9904-1967-11798-1. |





















[1] |
Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020034 |
[2] |
Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605 |
[3] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
[4] |
Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020355 |
[5] |
Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122 |
[6] |
Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020396 |
[7] |
Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020402 |
[8] |
Tong Peng. Designing prorated lifetime warranty strategy for high-value and durable products under two-dimensional warranty. Journal of Industrial & Management Optimization, 2021, 17 (2) : 953-970. doi: 10.3934/jimo.2020006 |
[9] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[10] |
Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020045 |
[11] |
Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263 |
[12] |
Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020381 |
[13] |
Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139 |
[14] |
Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115 |
[15] |
Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020370 |
[16] |
Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328 |
[17] |
Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 |
[18] |
Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128 |
[19] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
[20] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020408 |
2019 Impact Factor: 1.338
Tools
Article outline
Figures and Tables
[Back to Top]