March  2021, 41(3): 1133-1155. doi: 10.3934/dcds.2020312

Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity

1. 

Université Paris-Saclay, CNRS, Laboratoire de Mathématiques d'Orsay, 91405 Orsay, France

2. 

School of Mathematics and Statistics, Lanzhou University, 370000 Lanzhou, China

* Corresponding author

Received  April 2020 Revised  July 2020 Published  August 2020

Fund Project: The work of both authors was partially supported by the ANR project ANuI (ANR-17-CE40-0035-02)

We prove global existence and modified scattering for the solutions of the Cauchy problem to the fractional Korteweg-de Vries equation with cubic nonlinearity for small, smooth and localized initial data.

Citation: Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312
References:
[1]

J. Biello and J. K. Hunter, Nonlinear Hamiltonian waves with constant frequency and surface waves on vorticity discontinuities, Comm. Pure Appl. Math., 63 (2010), 303-336.  doi: 10.1002/cpa.20304.  Google Scholar

[2]

A. Bressan and K. T. Nguyen, Global existence of weak solutions for the Burgers-Hilbert equation, SIAM J. Math. Anal., 46 (2014), 2884-2904.  doi: 10.1137/140957536.  Google Scholar

[3]

A. CastroD. Córdoba and F. Gancedo, Singularity formations for a surface wave model, Nonlinearity, 23 (2010), 2835-2847.  doi: 10.1088/0951-7715/23/11/006.  Google Scholar

[4]

D. CórdobaJ. Gómez-Serrano and A. D. Ionescu, Global solutions for the generalized SQG patch equation, Arch. Ration. Mech. Anal., 233 (2019), 1211-1251.  doi: 10.1007/s00205-019-01377-6.  Google Scholar

[5]

M. Ehrnström and Y. Wang, Enhanced existence time of solutions to the fractional Korteweg-de Vries equation, SIAM J. Math. Anal., 51 (2019), 3298-3323.  doi: 10.1137/19M1237867.  Google Scholar

[6]

P. GermainN. Masmoudi and J. Shatah, Global solutions for 3D quadratic Schrödinger equations, Int. Math. Res. Not. IMRN., 2009 (2009), 414-432.  doi: 10.1093/imrn/rnn135.  Google Scholar

[7]

S. GustafsonK. Nakanishi and T.-P. Tsai, Global dispersive solutions for the Gross-Pitaevskii equation in two and three dimensions, Ann. Henri Poincaré, 8 (2007), 1303-1331.  doi: 10.1007/s00023-007-0336-6.  Google Scholar

[8]

N. Hayashi and P. I. Naumkin, Large time behavior of solutions for the modified Korteweg-de Vries equation, Internat. Math. Res. Notices, 1999 (1999), 395-418.  doi: 10.1155/S1073792899000203.  Google Scholar

[9]

J. K. Hunter and M. Ifrim, Enhanced life span of smooth solutions of a Burgers-Hilbert equation, SIAM J. Math. Anal., 44 (2012), 2039-2052.  doi: 10.1137/110849791.  Google Scholar

[10]

J. K. HunterM. IfrimD. Tataru and T. K. Wong, Long time solutions for a Burgers-Hilbert equation via a modified energy method, Proc. Amer. Math. Soc., 143 (2015), 3407-3412.  doi: 10.1090/proc/12215.  Google Scholar

[11]

V. M. Hur and L. Tao, Wave breaking for the Whitham equation with fractional dispersion, Nonlinearity, 27 (2014), 2937-2949.  doi: 10.1088/0951-7715/27/12/2937.  Google Scholar

[12]

V. M. Hur, Wave breaking in the Whitham equation, Adv. Math., 317 (2017), 410-437.  doi: 10.1016/j.aim.2017.07.006.  Google Scholar

[13]

A. D. Ionescu and F. Pusateri, Global solutions for the gravity water waves system in 2d, Invent. Math., 199 (2015), 653-804.  doi: 10.1007/s00222-014-0521-4.  Google Scholar

[14]

A. D. Ionescu and F. Pusateri, Global analysis of a model for capillary water waves in two dimensions, Comm. Pure Appl. Math., 69 (2016), 2015-2071.  doi: 10.1002/cpa.21654.  Google Scholar

[15]

A. D. Ionescu and F. Pusateri, Nonlinear fractional Schrödinger equations in one dimension, J. Funct. Anal., 266 (2014), 139-176.  doi: 10.1016/j.jfa.2013.08.027.  Google Scholar

[16]

C. KleinF. LinaresD. Pilod and J.-C. Saut, On Whitham and related equations, Stud. Appl. Math., 140 (2018), 133-177.  doi: 10.1111/sapm.12194.  Google Scholar

[17]

C. Klein and J.-C. Saut, A numerical approach to blow-up issues for dispersive perturbations of Burgers' equation, Phys. D, 295/296 (2015), 46-65.  doi: 10.1016/j.physd.2014.12.004.  Google Scholar

[18]

F. LinaresD. Pilod and J.-C. Saut, Dispersive perturbations of Burgers and hyperbolic equations Ⅰ: Local theory, SIAM J. Math. Anal., 46 (2014), 1505-1537.  doi: 10.1137/130912001.  Google Scholar

[19]

L. MolinetD. Pilod and S. Vento, On well-posedness for some dispersive perturbations of Burgers' equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 1719-1756.  doi: 10.1016/j.anihpc.2017.12.004.  Google Scholar

[20]

J.-C. Saut and Y. Wang, The wave breaking for Whitham-type equations revisited, preprint, arXiv: 2006.03803. Google Scholar

[21]

R. Yang, Shock formation for the Burgers-Hilbert equation, preprint, arXiv: 2006.05568. Google Scholar

show all references

References:
[1]

J. Biello and J. K. Hunter, Nonlinear Hamiltonian waves with constant frequency and surface waves on vorticity discontinuities, Comm. Pure Appl. Math., 63 (2010), 303-336.  doi: 10.1002/cpa.20304.  Google Scholar

[2]

A. Bressan and K. T. Nguyen, Global existence of weak solutions for the Burgers-Hilbert equation, SIAM J. Math. Anal., 46 (2014), 2884-2904.  doi: 10.1137/140957536.  Google Scholar

[3]

A. CastroD. Córdoba and F. Gancedo, Singularity formations for a surface wave model, Nonlinearity, 23 (2010), 2835-2847.  doi: 10.1088/0951-7715/23/11/006.  Google Scholar

[4]

D. CórdobaJ. Gómez-Serrano and A. D. Ionescu, Global solutions for the generalized SQG patch equation, Arch. Ration. Mech. Anal., 233 (2019), 1211-1251.  doi: 10.1007/s00205-019-01377-6.  Google Scholar

[5]

M. Ehrnström and Y. Wang, Enhanced existence time of solutions to the fractional Korteweg-de Vries equation, SIAM J. Math. Anal., 51 (2019), 3298-3323.  doi: 10.1137/19M1237867.  Google Scholar

[6]

P. GermainN. Masmoudi and J. Shatah, Global solutions for 3D quadratic Schrödinger equations, Int. Math. Res. Not. IMRN., 2009 (2009), 414-432.  doi: 10.1093/imrn/rnn135.  Google Scholar

[7]

S. GustafsonK. Nakanishi and T.-P. Tsai, Global dispersive solutions for the Gross-Pitaevskii equation in two and three dimensions, Ann. Henri Poincaré, 8 (2007), 1303-1331.  doi: 10.1007/s00023-007-0336-6.  Google Scholar

[8]

N. Hayashi and P. I. Naumkin, Large time behavior of solutions for the modified Korteweg-de Vries equation, Internat. Math. Res. Notices, 1999 (1999), 395-418.  doi: 10.1155/S1073792899000203.  Google Scholar

[9]

J. K. Hunter and M. Ifrim, Enhanced life span of smooth solutions of a Burgers-Hilbert equation, SIAM J. Math. Anal., 44 (2012), 2039-2052.  doi: 10.1137/110849791.  Google Scholar

[10]

J. K. HunterM. IfrimD. Tataru and T. K. Wong, Long time solutions for a Burgers-Hilbert equation via a modified energy method, Proc. Amer. Math. Soc., 143 (2015), 3407-3412.  doi: 10.1090/proc/12215.  Google Scholar

[11]

V. M. Hur and L. Tao, Wave breaking for the Whitham equation with fractional dispersion, Nonlinearity, 27 (2014), 2937-2949.  doi: 10.1088/0951-7715/27/12/2937.  Google Scholar

[12]

V. M. Hur, Wave breaking in the Whitham equation, Adv. Math., 317 (2017), 410-437.  doi: 10.1016/j.aim.2017.07.006.  Google Scholar

[13]

A. D. Ionescu and F. Pusateri, Global solutions for the gravity water waves system in 2d, Invent. Math., 199 (2015), 653-804.  doi: 10.1007/s00222-014-0521-4.  Google Scholar

[14]

A. D. Ionescu and F. Pusateri, Global analysis of a model for capillary water waves in two dimensions, Comm. Pure Appl. Math., 69 (2016), 2015-2071.  doi: 10.1002/cpa.21654.  Google Scholar

[15]

A. D. Ionescu and F. Pusateri, Nonlinear fractional Schrödinger equations in one dimension, J. Funct. Anal., 266 (2014), 139-176.  doi: 10.1016/j.jfa.2013.08.027.  Google Scholar

[16]

C. KleinF. LinaresD. Pilod and J.-C. Saut, On Whitham and related equations, Stud. Appl. Math., 140 (2018), 133-177.  doi: 10.1111/sapm.12194.  Google Scholar

[17]

C. Klein and J.-C. Saut, A numerical approach to blow-up issues for dispersive perturbations of Burgers' equation, Phys. D, 295/296 (2015), 46-65.  doi: 10.1016/j.physd.2014.12.004.  Google Scholar

[18]

F. LinaresD. Pilod and J.-C. Saut, Dispersive perturbations of Burgers and hyperbolic equations Ⅰ: Local theory, SIAM J. Math. Anal., 46 (2014), 1505-1537.  doi: 10.1137/130912001.  Google Scholar

[19]

L. MolinetD. Pilod and S. Vento, On well-posedness for some dispersive perturbations of Burgers' equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 1719-1756.  doi: 10.1016/j.anihpc.2017.12.004.  Google Scholar

[20]

J.-C. Saut and Y. Wang, The wave breaking for Whitham-type equations revisited, preprint, arXiv: 2006.03803. Google Scholar

[21]

R. Yang, Shock formation for the Burgers-Hilbert equation, preprint, arXiv: 2006.05568. Google Scholar

[1]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[2]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[3]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[4]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[5]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[6]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[7]

Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035

[8]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[9]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[10]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[11]

Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077

[12]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[13]

Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040

[14]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[15]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[16]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[17]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[18]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[19]

Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020125

[20]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (118)
  • HTML views (217)
  • Cited by (1)

Other articles
by authors

[Back to Top]