-
Previous Article
Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows
- DCDS Home
- This Issue
-
Next Article
Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere
Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity
1. | Université Paris-Saclay, CNRS, Laboratoire de Mathématiques d'Orsay, 91405 Orsay, France |
2. | School of Mathematics and Statistics, Lanzhou University, 370000 Lanzhou, China |
We prove global existence and modified scattering for the solutions of the Cauchy problem to the fractional Korteweg-de Vries equation with cubic nonlinearity for small, smooth and localized initial data.
References:
[1] |
J. Biello and J. K. Hunter,
Nonlinear Hamiltonian waves with constant frequency and surface waves on vorticity discontinuities, Comm. Pure Appl. Math., 63 (2010), 303-336.
doi: 10.1002/cpa.20304. |
[2] |
A. Bressan and K. T. Nguyen,
Global existence of weak solutions for the Burgers-Hilbert equation, SIAM J. Math. Anal., 46 (2014), 2884-2904.
doi: 10.1137/140957536. |
[3] |
A. Castro, D. Córdoba and F. Gancedo,
Singularity formations for a surface wave model, Nonlinearity, 23 (2010), 2835-2847.
doi: 10.1088/0951-7715/23/11/006. |
[4] |
D. Córdoba, J. Gómez-Serrano and A. D. Ionescu,
Global solutions for the generalized SQG patch equation, Arch. Ration. Mech. Anal., 233 (2019), 1211-1251.
doi: 10.1007/s00205-019-01377-6. |
[5] |
M. Ehrnström and Y. Wang,
Enhanced existence time of solutions to the fractional Korteweg-de Vries equation, SIAM J. Math. Anal., 51 (2019), 3298-3323.
doi: 10.1137/19M1237867. |
[6] |
P. Germain, N. Masmoudi and J. Shatah,
Global solutions for 3D quadratic Schrödinger equations, Int. Math. Res. Not. IMRN., 2009 (2009), 414-432.
doi: 10.1093/imrn/rnn135. |
[7] |
S. Gustafson, K. Nakanishi and T.-P. Tsai,
Global dispersive solutions for the Gross-Pitaevskii equation in two and three dimensions, Ann. Henri Poincaré, 8 (2007), 1303-1331.
doi: 10.1007/s00023-007-0336-6. |
[8] |
N. Hayashi and P. I. Naumkin,
Large time behavior of solutions for the modified Korteweg-de Vries equation, Internat. Math. Res. Notices, 1999 (1999), 395-418.
doi: 10.1155/S1073792899000203. |
[9] |
J. K. Hunter and M. Ifrim,
Enhanced life span of smooth solutions of a Burgers-Hilbert equation, SIAM J. Math. Anal., 44 (2012), 2039-2052.
doi: 10.1137/110849791. |
[10] |
J. K. Hunter, M. Ifrim, D. Tataru and T. K. Wong,
Long time solutions for a Burgers-Hilbert equation via a modified energy method, Proc. Amer. Math. Soc., 143 (2015), 3407-3412.
doi: 10.1090/proc/12215. |
[11] |
V. M. Hur and L. Tao,
Wave breaking for the Whitham equation with fractional dispersion, Nonlinearity, 27 (2014), 2937-2949.
doi: 10.1088/0951-7715/27/12/2937. |
[12] |
V. M. Hur,
Wave breaking in the Whitham equation, Adv. Math., 317 (2017), 410-437.
doi: 10.1016/j.aim.2017.07.006. |
[13] |
A. D. Ionescu and F. Pusateri,
Global solutions for the gravity water waves system in 2d, Invent. Math., 199 (2015), 653-804.
doi: 10.1007/s00222-014-0521-4. |
[14] |
A. D. Ionescu and F. Pusateri,
Global analysis of a model for capillary water waves in two dimensions, Comm. Pure Appl. Math., 69 (2016), 2015-2071.
doi: 10.1002/cpa.21654. |
[15] |
A. D. Ionescu and F. Pusateri,
Nonlinear fractional Schrödinger equations in one dimension, J. Funct. Anal., 266 (2014), 139-176.
doi: 10.1016/j.jfa.2013.08.027. |
[16] |
C. Klein, F. Linares, D. Pilod and J.-C. Saut,
On Whitham and related equations, Stud. Appl. Math., 140 (2018), 133-177.
doi: 10.1111/sapm.12194. |
[17] |
C. Klein and J.-C. Saut,
A numerical approach to blow-up issues for dispersive perturbations of Burgers' equation, Phys. D, 295/296 (2015), 46-65.
doi: 10.1016/j.physd.2014.12.004. |
[18] |
F. Linares, D. Pilod and J.-C. Saut,
Dispersive perturbations of Burgers and hyperbolic equations Ⅰ: Local theory, SIAM J. Math. Anal., 46 (2014), 1505-1537.
doi: 10.1137/130912001. |
[19] |
L. Molinet, D. Pilod and S. Vento,
On well-posedness for some dispersive perturbations of Burgers' equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 1719-1756.
doi: 10.1016/j.anihpc.2017.12.004. |
[20] |
J.-C. Saut and Y. Wang, The wave breaking for Whitham-type equations revisited, preprint, arXiv: 2006.03803. Google Scholar |
[21] |
R. Yang, Shock formation for the Burgers-Hilbert equation, preprint, arXiv: 2006.05568. Google Scholar |
show all references
References:
[1] |
J. Biello and J. K. Hunter,
Nonlinear Hamiltonian waves with constant frequency and surface waves on vorticity discontinuities, Comm. Pure Appl. Math., 63 (2010), 303-336.
doi: 10.1002/cpa.20304. |
[2] |
A. Bressan and K. T. Nguyen,
Global existence of weak solutions for the Burgers-Hilbert equation, SIAM J. Math. Anal., 46 (2014), 2884-2904.
doi: 10.1137/140957536. |
[3] |
A. Castro, D. Córdoba and F. Gancedo,
Singularity formations for a surface wave model, Nonlinearity, 23 (2010), 2835-2847.
doi: 10.1088/0951-7715/23/11/006. |
[4] |
D. Córdoba, J. Gómez-Serrano and A. D. Ionescu,
Global solutions for the generalized SQG patch equation, Arch. Ration. Mech. Anal., 233 (2019), 1211-1251.
doi: 10.1007/s00205-019-01377-6. |
[5] |
M. Ehrnström and Y. Wang,
Enhanced existence time of solutions to the fractional Korteweg-de Vries equation, SIAM J. Math. Anal., 51 (2019), 3298-3323.
doi: 10.1137/19M1237867. |
[6] |
P. Germain, N. Masmoudi and J. Shatah,
Global solutions for 3D quadratic Schrödinger equations, Int. Math. Res. Not. IMRN., 2009 (2009), 414-432.
doi: 10.1093/imrn/rnn135. |
[7] |
S. Gustafson, K. Nakanishi and T.-P. Tsai,
Global dispersive solutions for the Gross-Pitaevskii equation in two and three dimensions, Ann. Henri Poincaré, 8 (2007), 1303-1331.
doi: 10.1007/s00023-007-0336-6. |
[8] |
N. Hayashi and P. I. Naumkin,
Large time behavior of solutions for the modified Korteweg-de Vries equation, Internat. Math. Res. Notices, 1999 (1999), 395-418.
doi: 10.1155/S1073792899000203. |
[9] |
J. K. Hunter and M. Ifrim,
Enhanced life span of smooth solutions of a Burgers-Hilbert equation, SIAM J. Math. Anal., 44 (2012), 2039-2052.
doi: 10.1137/110849791. |
[10] |
J. K. Hunter, M. Ifrim, D. Tataru and T. K. Wong,
Long time solutions for a Burgers-Hilbert equation via a modified energy method, Proc. Amer. Math. Soc., 143 (2015), 3407-3412.
doi: 10.1090/proc/12215. |
[11] |
V. M. Hur and L. Tao,
Wave breaking for the Whitham equation with fractional dispersion, Nonlinearity, 27 (2014), 2937-2949.
doi: 10.1088/0951-7715/27/12/2937. |
[12] |
V. M. Hur,
Wave breaking in the Whitham equation, Adv. Math., 317 (2017), 410-437.
doi: 10.1016/j.aim.2017.07.006. |
[13] |
A. D. Ionescu and F. Pusateri,
Global solutions for the gravity water waves system in 2d, Invent. Math., 199 (2015), 653-804.
doi: 10.1007/s00222-014-0521-4. |
[14] |
A. D. Ionescu and F. Pusateri,
Global analysis of a model for capillary water waves in two dimensions, Comm. Pure Appl. Math., 69 (2016), 2015-2071.
doi: 10.1002/cpa.21654. |
[15] |
A. D. Ionescu and F. Pusateri,
Nonlinear fractional Schrödinger equations in one dimension, J. Funct. Anal., 266 (2014), 139-176.
doi: 10.1016/j.jfa.2013.08.027. |
[16] |
C. Klein, F. Linares, D. Pilod and J.-C. Saut,
On Whitham and related equations, Stud. Appl. Math., 140 (2018), 133-177.
doi: 10.1111/sapm.12194. |
[17] |
C. Klein and J.-C. Saut,
A numerical approach to blow-up issues for dispersive perturbations of Burgers' equation, Phys. D, 295/296 (2015), 46-65.
doi: 10.1016/j.physd.2014.12.004. |
[18] |
F. Linares, D. Pilod and J.-C. Saut,
Dispersive perturbations of Burgers and hyperbolic equations Ⅰ: Local theory, SIAM J. Math. Anal., 46 (2014), 1505-1537.
doi: 10.1137/130912001. |
[19] |
L. Molinet, D. Pilod and S. Vento,
On well-posedness for some dispersive perturbations of Burgers' equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 1719-1756.
doi: 10.1016/j.anihpc.2017.12.004. |
[20] |
J.-C. Saut and Y. Wang, The wave breaking for Whitham-type equations revisited, preprint, arXiv: 2006.03803. Google Scholar |
[21] |
R. Yang, Shock formation for the Burgers-Hilbert equation, preprint, arXiv: 2006.05568. Google Scholar |
[1] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
[2] |
Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287 |
[3] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[4] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[5] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[6] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[7] |
Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035 |
[8] |
Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292 |
[9] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[10] |
Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021001 |
[11] |
Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077 |
[12] |
Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 |
[13] |
Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040 |
[14] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[15] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001 |
[16] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[17] |
Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020469 |
[18] |
Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 |
[19] |
Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020125 |
[20] |
Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020336 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]