-
Previous Article
Asymptotic stability in a chemotaxis-competition system with indirect signal production
- DCDS Home
- This Issue
-
Next Article
Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows
Multiple ergodic averages for tempered functions
The Ohio State University, Department of Mathematics, Columbus, Ohio, USA |
Following Frantzikinakis' approach on averages for Hardy field functions of different growth, we add to the topic by studying the corresponding averages for tempered functions, a class which also contains functions that oscillate and is in general more restrictive to deal with. Our main result is the existence and the explicit expression of the $ L^2 $-norm limit of the aforementioned averages, which turns out, as in the Hardy field case, to be the "expected" one. The main ingredients are the use of, the now classical, PET induction (introduced by Bergelson), covering a more general case, namely a "nice" class of tempered functions (developed by Chu-Frantzikinakis-Host for polynomials and Frantzikinakis for Hardy field functions) and some equidistribution results on nilmanifolds (analogous to the ones of Frantzikinakis' for the Hardy field case).
References:
[1] |
T. Austin,
Pleasant extensions retaining algebraic structure, II, J. Anal. Math., 126 (2015), 1-111.
doi: 10.1007/s11854-015-0013-5. |
[2] |
V. Bergelson, Ergodic Ramsey theory, in Logic and Combinatorics, Contemp. Math., 65, Amer. Math. Soc., Providence, RI, 1987, 63–87. |
[3] |
V. Bergelson, Ergodic Ramsey theory – An update, in Ergodic Theory of $\mathbb{Z}^d$-Actions, London
Math. Soc. Lecture Note Ser., 228, Cambridge Univ. Press, Cambridge, 1996, 1–61.
doi: 10.1017/CBO9780511662812.002. |
[4] |
V. Bergelson,
Weakly mixing PET, Ergodic Theory Dynam. Systems, 7 (1987), 337-349.
doi: 10.1017/S0143385700004090. |
[5] |
V. Bergelson and I. J. Håland-Knutson,
Weakly mixing implies weak mixing of higher orders along tempered functions, Ergodic Theory Dynam. Systems, 29 (2009), 1375-1416.
doi: 10.1017/S0143385708000862. |
[6] |
V. Bergelson, B. Host and B. Kra,
Multiple recurrence and nilsequences, Invent. Math., 160 (2005), 261-303.
doi: 10.1007/s00222-004-0428-6. |
[7] |
V. Bergelson, G. Kolesnik and Y. Son,
Uniform distribution of subpolynomial functions along primes and applications, J. Anal. Math., 137 (2019), 135-187.
doi: 10.1007/s11854-018-0068-1. |
[8] |
V. Bergelson and A. Leibman,
Distribution of values of bounded generalized polynomials, Acta Math., 198 (2007), 155-230.
doi: 10.1007/s11511-007-0015-y. |
[9] |
V. Bergelson and A. Leibman,
Polynomial extensions of van der Waerden's and Szemerédi's theorems, J. Amer. Math. Soc., 9 (1996), 725-753.
doi: 10.1090/S0894-0347-96-00194-4. |
[10] |
Q. Chu, N. Frantzikinakis and B. Host, Ergodic averages of commuting transformations with
distinct degree polynomial iterates, Proc. Lond. Math. Soc. (3), 102 (2011), 801–842.
doi: 10.1112/plms/pdq037. |
[11] |
S. Donoso, A. Koutsogiannis and W. Sun,
Pointwise multiple averages for sublinear functions, Ergodic Theory Dynam. Systems, 40 (2020), 1594-1618.
doi: 10.1017/etds.2018.118. |
[12] |
S. Donoso, A. Koutsogiannis and W. Sun, Seminorms for multiple averages along polynomials and applications to joint ergodicity, To appear in J. Anal. Math. Google Scholar |
[13] |
N. Frantzikinakis,
Multiple correlation sequences and nilsequences, Invent. Math., 202 (2015), 875-892.
doi: 10.1007/s00222-015-0579-7. |
[14] |
N. Frantzikinakis,
Multiple recurrence and convergence for Hardy sequences of polynomial growth, J. Anal. Math., 112 (2010), 79-135.
doi: 10.1007/s11854-010-0026-z. |
[15] |
N. Frantzikinakis,
A multidimensional Szemerédi theorem for Hardy sequences of different growth, Trans. Amer. Math. Soc., 367 (2015), 5653-5692.
doi: 10.1090/S0002-9947-2014-06275-2. |
[16] |
N. Frantzikinakis,
Equidistribution of sparse sequences on nilmanifolds, J. Anal. Math., 109 (2009), 353-395.
doi: 10.1007/s11854-009-0035-y. |
[17] |
H. Furstenberg,
Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Anal. Math., 31 (1977), 204-256.
doi: 10.1007/BF02813304. |
[18] |
H. Furstenberg, Y. Katznelson and D. Ornstein,
The ergodic theoretical proof of Szemerédi's theorem, Bull. Amer. Math. Soc. (N. S.), 7 (1982), 527-552.
doi: 10.1090/S0273-0979-1982-15052-2. |
[19] |
B. Host and B. Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2),
161 (2005), 397–488.
doi: 10.4007/annals.2005.161.397. |
[20] |
B. Host and B. Kra,
Uniformity seminorms on $l^{\infty}$ and applications, J. Anal. Math., 108 (2009), 219-276.
doi: 10.1007/s11854-009-0024-1. |
[21] |
D. Karageorgos and A. Koutsogiannis,
Integer part independent polynomial averages and applications along primes, Studia Math., 249 (2019), 233-257.
doi: 10.4064/sm171102-18-9. |
[22] |
A. Koutsogiannis,
Integer part polynomial correlation sequences, Ergodic Theory Dynam. Systems, 38 (2018), 1525-1542.
doi: 10.1017/etds.2016.67. |
[23] |
A. Koutsogiannis,
Closest integer polynomial multiple recurrence along shifted primes, Ergodic Theory Dynam. Systems, 38 (2018), 666-685.
doi: 10.1017/etds.2016.40. |
[24] |
L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Pure and Applied Mathematics, Wiley-Interscience, New York-London-Sydney, 1974. |
[25] |
A. Leibman,
Multiple polynomial correlation sequences and nilsequences, Ergodic Theory Dynam. Systems, 30 (2010), 841-854.
doi: 10.1017/S0143385709000303. |
[26] |
A. Leibman,
Nilsequences, null-sequences, and multiple correlation sequences, Ergodic Theory Dynam. Systems, 35 (2015), 176-191.
doi: 10.1017/etds.2013.36. |
[27] |
M. N. Walsh, Norm convergence of nilpotent ergodic averages, Ann. of Math. (2), 175 (2012),
1667–1688.
doi: 10.4007/annals.2012.175.3.15. |
[28] |
H. Weyl,
Über die Gleichverteilung von Zahlen mod. Eins., Math. Ann., 77 (1916), 313-352.
doi: 10.1007/BF01475864. |
show all references
References:
[1] |
T. Austin,
Pleasant extensions retaining algebraic structure, II, J. Anal. Math., 126 (2015), 1-111.
doi: 10.1007/s11854-015-0013-5. |
[2] |
V. Bergelson, Ergodic Ramsey theory, in Logic and Combinatorics, Contemp. Math., 65, Amer. Math. Soc., Providence, RI, 1987, 63–87. |
[3] |
V. Bergelson, Ergodic Ramsey theory – An update, in Ergodic Theory of $\mathbb{Z}^d$-Actions, London
Math. Soc. Lecture Note Ser., 228, Cambridge Univ. Press, Cambridge, 1996, 1–61.
doi: 10.1017/CBO9780511662812.002. |
[4] |
V. Bergelson,
Weakly mixing PET, Ergodic Theory Dynam. Systems, 7 (1987), 337-349.
doi: 10.1017/S0143385700004090. |
[5] |
V. Bergelson and I. J. Håland-Knutson,
Weakly mixing implies weak mixing of higher orders along tempered functions, Ergodic Theory Dynam. Systems, 29 (2009), 1375-1416.
doi: 10.1017/S0143385708000862. |
[6] |
V. Bergelson, B. Host and B. Kra,
Multiple recurrence and nilsequences, Invent. Math., 160 (2005), 261-303.
doi: 10.1007/s00222-004-0428-6. |
[7] |
V. Bergelson, G. Kolesnik and Y. Son,
Uniform distribution of subpolynomial functions along primes and applications, J. Anal. Math., 137 (2019), 135-187.
doi: 10.1007/s11854-018-0068-1. |
[8] |
V. Bergelson and A. Leibman,
Distribution of values of bounded generalized polynomials, Acta Math., 198 (2007), 155-230.
doi: 10.1007/s11511-007-0015-y. |
[9] |
V. Bergelson and A. Leibman,
Polynomial extensions of van der Waerden's and Szemerédi's theorems, J. Amer. Math. Soc., 9 (1996), 725-753.
doi: 10.1090/S0894-0347-96-00194-4. |
[10] |
Q. Chu, N. Frantzikinakis and B. Host, Ergodic averages of commuting transformations with
distinct degree polynomial iterates, Proc. Lond. Math. Soc. (3), 102 (2011), 801–842.
doi: 10.1112/plms/pdq037. |
[11] |
S. Donoso, A. Koutsogiannis and W. Sun,
Pointwise multiple averages for sublinear functions, Ergodic Theory Dynam. Systems, 40 (2020), 1594-1618.
doi: 10.1017/etds.2018.118. |
[12] |
S. Donoso, A. Koutsogiannis and W. Sun, Seminorms for multiple averages along polynomials and applications to joint ergodicity, To appear in J. Anal. Math. Google Scholar |
[13] |
N. Frantzikinakis,
Multiple correlation sequences and nilsequences, Invent. Math., 202 (2015), 875-892.
doi: 10.1007/s00222-015-0579-7. |
[14] |
N. Frantzikinakis,
Multiple recurrence and convergence for Hardy sequences of polynomial growth, J. Anal. Math., 112 (2010), 79-135.
doi: 10.1007/s11854-010-0026-z. |
[15] |
N. Frantzikinakis,
A multidimensional Szemerédi theorem for Hardy sequences of different growth, Trans. Amer. Math. Soc., 367 (2015), 5653-5692.
doi: 10.1090/S0002-9947-2014-06275-2. |
[16] |
N. Frantzikinakis,
Equidistribution of sparse sequences on nilmanifolds, J. Anal. Math., 109 (2009), 353-395.
doi: 10.1007/s11854-009-0035-y. |
[17] |
H. Furstenberg,
Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Anal. Math., 31 (1977), 204-256.
doi: 10.1007/BF02813304. |
[18] |
H. Furstenberg, Y. Katznelson and D. Ornstein,
The ergodic theoretical proof of Szemerédi's theorem, Bull. Amer. Math. Soc. (N. S.), 7 (1982), 527-552.
doi: 10.1090/S0273-0979-1982-15052-2. |
[19] |
B. Host and B. Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2),
161 (2005), 397–488.
doi: 10.4007/annals.2005.161.397. |
[20] |
B. Host and B. Kra,
Uniformity seminorms on $l^{\infty}$ and applications, J. Anal. Math., 108 (2009), 219-276.
doi: 10.1007/s11854-009-0024-1. |
[21] |
D. Karageorgos and A. Koutsogiannis,
Integer part independent polynomial averages and applications along primes, Studia Math., 249 (2019), 233-257.
doi: 10.4064/sm171102-18-9. |
[22] |
A. Koutsogiannis,
Integer part polynomial correlation sequences, Ergodic Theory Dynam. Systems, 38 (2018), 1525-1542.
doi: 10.1017/etds.2016.67. |
[23] |
A. Koutsogiannis,
Closest integer polynomial multiple recurrence along shifted primes, Ergodic Theory Dynam. Systems, 38 (2018), 666-685.
doi: 10.1017/etds.2016.40. |
[24] |
L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Pure and Applied Mathematics, Wiley-Interscience, New York-London-Sydney, 1974. |
[25] |
A. Leibman,
Multiple polynomial correlation sequences and nilsequences, Ergodic Theory Dynam. Systems, 30 (2010), 841-854.
doi: 10.1017/S0143385709000303. |
[26] |
A. Leibman,
Nilsequences, null-sequences, and multiple correlation sequences, Ergodic Theory Dynam. Systems, 35 (2015), 176-191.
doi: 10.1017/etds.2013.36. |
[27] |
M. N. Walsh, Norm convergence of nilpotent ergodic averages, Ann. of Math. (2), 175 (2012),
1667–1688.
doi: 10.4007/annals.2012.175.3.15. |
[28] |
H. Weyl,
Über die Gleichverteilung von Zahlen mod. Eins., Math. Ann., 77 (1916), 313-352.
doi: 10.1007/BF01475864. |
[1] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020395 |
[2] |
Bimal Mandal, Aditi Kar Gangopadhyay. A note on generalization of bent boolean functions. Advances in Mathematics of Communications, 2021, 15 (2) : 329-346. doi: 10.3934/amc.2020069 |
[3] |
Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020169 |
[4] |
Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098 |
[5] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[6] |
Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020378 |
[7] |
Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020117 |
[8] |
Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015 |
[9] |
Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020106 |
[10] |
Meenakshi Rana, Shruti Sharma. Combinatorics of some fifth and sixth order mock theta functions. Electronic Research Archive, 2021, 29 (1) : 1803-1818. doi: 10.3934/era.2020092 |
[11] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[12] |
Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020125 |
[13] |
Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020296 |
[14] |
Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055 |
[15] |
Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020053 |
[16] |
Chunming Tang, Maozhi Xu, Yanfeng Qi, Mingshuo Zhou. A new class of $ p $-ary regular bent functions. Advances in Mathematics of Communications, 2021, 15 (1) : 55-64. doi: 10.3934/amc.2020042 |
[17] |
Sugata Gangopadhyay, Constanza Riera, Pantelimon Stănică. Gowers $ U_2 $ norm as a measure of nonlinearity for Boolean functions and their generalizations. Advances in Mathematics of Communications, 2021, 15 (2) : 241-256. doi: 10.3934/amc.2020056 |
[18] |
Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020121 |
[19] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[20] |
Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363 |
2019 Impact Factor: 1.338
Tools
Article outline
[Back to Top]