-
Previous Article
On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property
- DCDS Home
- This Issue
-
Next Article
Asymptotic stability in a chemotaxis-competition system with indirect signal production
On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations
1. | Texas A & M University, College Station, TX, USA, Institute for Information Transmission Problems, Moscow, Russia |
2. | University of Trieste, Trieste 34127, Italy |
We extend to a specific class of systems of nonlinear Schrödinger equations (NLS) the theory of asymptotic stability of ground states already proved for the scalar NLS. Here the key point is the choice of an adequate system of modulation coordinates and the novelty, compared to the scalar NLS, is the fact that the group of symmetries of the system is non-commutative.
References:
[1] |
V. I. Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Equations, vol. 250 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], Springer-Verlag, New York-Berlin, 1983. |
[2] |
D. Bambusi,
Asymptotic stability of ground states in some Hamiltonian PDEs with symmetry, Comm. Math. Phys., 320 (2013), 499-542.
doi: 10.1007/s00220-013-1684-3. |
[3] |
D. Bambusi and S. Cuccagna,
On dispersion of small energy solutions to the nonlinear Klein Gordon equation with a potential, Amer. J. Math., 133 (2011), 1421-1468.
doi: 10.1353/ajm.2011.0034. |
[4] |
M. Beceanu,
New estimates for a time-dependent Schrödinger equation, Duke Math. J., 159 (2011), 417-477.
doi: 10.1215/00127094-1433394. |
[5] |
S. Bhattarai,
Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 36 (2016), 1789-1811.
doi: 10.3934/dcds.2016.36.1789. |
[6] |
N. Boussaid,
Stable directions for small nonlinear Dirac standing waves, Comm. Math. Phys., 268 (2006), 757-817.
doi: 10.1007/s00220-006-0112-3. |
[7] |
N. Boussaid and S. Cuccagna,
On stability of standing waves of nonlinear Dirac equations, Comm. Partial Differential Equations, 37 (2012), 1001-1056.
doi: 10.1080/03605302.2012.665973. |
[8] |
N. Boussaïd and A. Comech,
Spectral stability of bi-frequency solitary waves in Soler and Dirac–Klein–Gordon models, Commun. Pure Appl. Anal., 17 (2018), 1331-1347.
doi: 10.3934/cpaa.2018065. |
[9] |
N. Boussaïd and A. Comech, Nonlinear Dirac equation. Spectral stability of solitary waves, vol. 244 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2019.
doi: 10.1090/surv/244. |
[10] |
N. Boussaïd and A. Comech, Spectral stability of small amplitude solitary waves of the Dirac equation with the Soler-type nonlinearity, J. Funct. Anal., 277 (2019), 108289, 68 pp.
doi: 10.1016/j.jfa.2019.108289. |
[11] |
V. S. Buslaev and G. S. Perel'man,
Scattering for the nonlinear Schrödinger equation: States that are close to a soliton, Algebra i Analiz, 4 (1992), 63-102.
|
[12] |
V. S. Buslaev and G. S. Perel'man, On the stability of solitary waves for nonlinear Schrödinger equations, in Nonlinear evolution equations, vol. 164 of Amer. Math. Soc. Transl. Ser. 2, 75–98, Amer. Math. Soc., Providence, RI, 1995.
doi: 10.1090/trans2/164/04. |
[13] |
T. Cazenave, Semilinear Schrödinger equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York, 2003.
doi: 10.1090/cln/010. |
[14] |
A. Comech, T. V. Phan and A. Stefanov,
Asymptotic stability of solitary waves in generalized Gross–Neveu model, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 157-196.
doi: 10.1016/j.anihpc.2015.11.001. |
[15] |
S. Cuccagna,
Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure Appl. Math., 54 (2001), 1110-1145.
doi: 10.1002/cpa.1018. |
[16] |
S. Cuccagna,
The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states, Comm. Math. Phys., 305 (2011), 279-331.
doi: 10.1007/s00220-011-1265-2. |
[17] |
S. Cuccagna,
On the Darboux and Birkhoff steps in the asymptotic stability of solitons, Rend. Istit. Mat. Univ. Trieste, 44 (2012), 197-257.
|
[18] |
S. Cuccagna,
On asymptotic stability of moving ground states of the nonlinear Schrödinger equation, Trans. Amer. Math. Soc., 366 (2014), 2827-2888.
doi: 10.1090/S0002-9947-2014-05770-X. |
[19] |
S. Cuccagna and M. Maeda,
On weak interaction between a ground state and a non-trapping potential, J. Differential Equations, 256 (2014), 1395-1466.
doi: 10.1016/j.jde.2013.11.002. |
[20] |
S. Cuccagna and M. Maeda,
On weak interaction between a ground state and a trapping potential, Discrete Contin. Dyn. Syst., 35 (2015), 3343-3376.
doi: 10.3934/dcds.2015.35.3343. |
[21] |
S. Cuccagna and M. Maeda,
On orbital instability of spectrally stable vortices of the NLS in the plane, J. Nonlinear Sci., 26 (2016), 1851-1894.
doi: 10.1007/s00332-016-9322-9. |
[22] |
S. De Bièvre and S. Rota Nodari,
Orbital stability via the energy-momentum method: The case of higher dimensional symmetry groups, Arch. Ration. Mech. Anal., 231 (2019), 233-284.
doi: 10.1007/s00205-018-1278-5. |
[23] |
M. P. Do Carmo, Riemannian Geometry, Birkhäuser Boston, Inc., Boston, MA, 1992. Second edn. |
[24] |
A. Galindo,
A remarkable invariance of classical Dirac Lagrangians, Lett. Nuovo Cimento (2), 20 (1977), 210-212.
doi: 10.1007/BF02785129. |
[25] |
M. Grillakis, J. Shatah and W. Strauss,
Stability theory of solitary waves in the presence of symmetry. Ⅱ, J. Funct. Anal., 94 (1990), 308-348.
doi: 10.1016/0022-1236(90)90016-E. |
[26] |
A. Jensen and T. Kato,
Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., 46 (1979), 583-611.
doi: 10.1215/S0012-7094-79-04631-3. |
[27] |
K. Nakanishi and W. Schlag,
Global dynamics above the ground state for the nonlinear Klein–Gordon equation without a radial assumption, Arch. Ration. Mech. Anal., 203 (2012), 809-851.
doi: 10.1007/s00205-011-0462-7. |
[28] |
P. J. Olver, Applications of Lie groups to differential equations, vol. 107 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1986.
doi: 10.1007/978-1-4684-0274-2. |
[29] |
D. E. Pelinovsky and A. Stefanov, Asymptotic stability of small gap solitons in nonlinear Dirac equations, J. Math. Phys., 53 (2012), 073705, 27 pp.
doi: 10.1063/1.4731477. |
[30] |
G. Perelman,
Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations, Comm. Partial Differential Equations, 29 (2004), 1051-1095.
doi: 10.1081/PDE-200033754. |
[31] |
C. Radford,
Dirac equation revisited: Charge quantization as a consequence of the Dirac equation, Phys. Rev. D, 27 (1983), 1970-1971.
doi: 10.1103/PhysRevD.27.1970. |
[32] |
M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, New York, 1978.
![]() |
[33] |
W. Rossmann, Lie Groups: An Introduction Through Linear Groups, Oxford Graduate Texts in Mathematics, 5. Oxford University Press, Oxford, 2002.
![]() |
[34] |
I. M. Sigal,
Nonlinear wave and Schrödinger equations. Ⅰ. Instability of periodic and quasiperiodic solutions, Comm. Math. Phys., 153 (1993), 297-320.
doi: 10.1007/BF02096645. |
[35] |
A. Soffer and M. I. Weinstein,
Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math., 136 (1999), 9-74.
doi: 10.1007/s002220050303. |
[36] |
W. A. Strauss, Nonlinear Wave Equations, vol. 73 of CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1989.
doi: 10.1090/cbms/073. |
[37] |
M. I. Weinstein,
Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.
doi: 10.1137/0516034. |
[38] |
M. I. Weinstein, Localized states and dynamics in the nonlinear Schrödinger / Gross–Pitaevskii equation, Dynamics of Partial Differential Equations. Frontiers in Applied Dynamical Systems: Reviews and Tutorials, vol 3. Springer, Cham. 41–79.
doi: 10.1007/978-3-319-19935-1_2. |
[39] |
J. A. Wolf, Harmonic Analysis on Commutative Spaces, vol. 142 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2007.
doi: 10.1090/surv/142. |
show all references
References:
[1] |
V. I. Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Equations, vol. 250 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], Springer-Verlag, New York-Berlin, 1983. |
[2] |
D. Bambusi,
Asymptotic stability of ground states in some Hamiltonian PDEs with symmetry, Comm. Math. Phys., 320 (2013), 499-542.
doi: 10.1007/s00220-013-1684-3. |
[3] |
D. Bambusi and S. Cuccagna,
On dispersion of small energy solutions to the nonlinear Klein Gordon equation with a potential, Amer. J. Math., 133 (2011), 1421-1468.
doi: 10.1353/ajm.2011.0034. |
[4] |
M. Beceanu,
New estimates for a time-dependent Schrödinger equation, Duke Math. J., 159 (2011), 417-477.
doi: 10.1215/00127094-1433394. |
[5] |
S. Bhattarai,
Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations, Discrete Contin. Dyn. Syst., 36 (2016), 1789-1811.
doi: 10.3934/dcds.2016.36.1789. |
[6] |
N. Boussaid,
Stable directions for small nonlinear Dirac standing waves, Comm. Math. Phys., 268 (2006), 757-817.
doi: 10.1007/s00220-006-0112-3. |
[7] |
N. Boussaid and S. Cuccagna,
On stability of standing waves of nonlinear Dirac equations, Comm. Partial Differential Equations, 37 (2012), 1001-1056.
doi: 10.1080/03605302.2012.665973. |
[8] |
N. Boussaïd and A. Comech,
Spectral stability of bi-frequency solitary waves in Soler and Dirac–Klein–Gordon models, Commun. Pure Appl. Anal., 17 (2018), 1331-1347.
doi: 10.3934/cpaa.2018065. |
[9] |
N. Boussaïd and A. Comech, Nonlinear Dirac equation. Spectral stability of solitary waves, vol. 244 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2019.
doi: 10.1090/surv/244. |
[10] |
N. Boussaïd and A. Comech, Spectral stability of small amplitude solitary waves of the Dirac equation with the Soler-type nonlinearity, J. Funct. Anal., 277 (2019), 108289, 68 pp.
doi: 10.1016/j.jfa.2019.108289. |
[11] |
V. S. Buslaev and G. S. Perel'man,
Scattering for the nonlinear Schrödinger equation: States that are close to a soliton, Algebra i Analiz, 4 (1992), 63-102.
|
[12] |
V. S. Buslaev and G. S. Perel'man, On the stability of solitary waves for nonlinear Schrödinger equations, in Nonlinear evolution equations, vol. 164 of Amer. Math. Soc. Transl. Ser. 2, 75–98, Amer. Math. Soc., Providence, RI, 1995.
doi: 10.1090/trans2/164/04. |
[13] |
T. Cazenave, Semilinear Schrödinger equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York, 2003.
doi: 10.1090/cln/010. |
[14] |
A. Comech, T. V. Phan and A. Stefanov,
Asymptotic stability of solitary waves in generalized Gross–Neveu model, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 157-196.
doi: 10.1016/j.anihpc.2015.11.001. |
[15] |
S. Cuccagna,
Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure Appl. Math., 54 (2001), 1110-1145.
doi: 10.1002/cpa.1018. |
[16] |
S. Cuccagna,
The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states, Comm. Math. Phys., 305 (2011), 279-331.
doi: 10.1007/s00220-011-1265-2. |
[17] |
S. Cuccagna,
On the Darboux and Birkhoff steps in the asymptotic stability of solitons, Rend. Istit. Mat. Univ. Trieste, 44 (2012), 197-257.
|
[18] |
S. Cuccagna,
On asymptotic stability of moving ground states of the nonlinear Schrödinger equation, Trans. Amer. Math. Soc., 366 (2014), 2827-2888.
doi: 10.1090/S0002-9947-2014-05770-X. |
[19] |
S. Cuccagna and M. Maeda,
On weak interaction between a ground state and a non-trapping potential, J. Differential Equations, 256 (2014), 1395-1466.
doi: 10.1016/j.jde.2013.11.002. |
[20] |
S. Cuccagna and M. Maeda,
On weak interaction between a ground state and a trapping potential, Discrete Contin. Dyn. Syst., 35 (2015), 3343-3376.
doi: 10.3934/dcds.2015.35.3343. |
[21] |
S. Cuccagna and M. Maeda,
On orbital instability of spectrally stable vortices of the NLS in the plane, J. Nonlinear Sci., 26 (2016), 1851-1894.
doi: 10.1007/s00332-016-9322-9. |
[22] |
S. De Bièvre and S. Rota Nodari,
Orbital stability via the energy-momentum method: The case of higher dimensional symmetry groups, Arch. Ration. Mech. Anal., 231 (2019), 233-284.
doi: 10.1007/s00205-018-1278-5. |
[23] |
M. P. Do Carmo, Riemannian Geometry, Birkhäuser Boston, Inc., Boston, MA, 1992. Second edn. |
[24] |
A. Galindo,
A remarkable invariance of classical Dirac Lagrangians, Lett. Nuovo Cimento (2), 20 (1977), 210-212.
doi: 10.1007/BF02785129. |
[25] |
M. Grillakis, J. Shatah and W. Strauss,
Stability theory of solitary waves in the presence of symmetry. Ⅱ, J. Funct. Anal., 94 (1990), 308-348.
doi: 10.1016/0022-1236(90)90016-E. |
[26] |
A. Jensen and T. Kato,
Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., 46 (1979), 583-611.
doi: 10.1215/S0012-7094-79-04631-3. |
[27] |
K. Nakanishi and W. Schlag,
Global dynamics above the ground state for the nonlinear Klein–Gordon equation without a radial assumption, Arch. Ration. Mech. Anal., 203 (2012), 809-851.
doi: 10.1007/s00205-011-0462-7. |
[28] |
P. J. Olver, Applications of Lie groups to differential equations, vol. 107 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1986.
doi: 10.1007/978-1-4684-0274-2. |
[29] |
D. E. Pelinovsky and A. Stefanov, Asymptotic stability of small gap solitons in nonlinear Dirac equations, J. Math. Phys., 53 (2012), 073705, 27 pp.
doi: 10.1063/1.4731477. |
[30] |
G. Perelman,
Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations, Comm. Partial Differential Equations, 29 (2004), 1051-1095.
doi: 10.1081/PDE-200033754. |
[31] |
C. Radford,
Dirac equation revisited: Charge quantization as a consequence of the Dirac equation, Phys. Rev. D, 27 (1983), 1970-1971.
doi: 10.1103/PhysRevD.27.1970. |
[32] |
M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, New York, 1978.
![]() |
[33] |
W. Rossmann, Lie Groups: An Introduction Through Linear Groups, Oxford Graduate Texts in Mathematics, 5. Oxford University Press, Oxford, 2002.
![]() |
[34] |
I. M. Sigal,
Nonlinear wave and Schrödinger equations. Ⅰ. Instability of periodic and quasiperiodic solutions, Comm. Math. Phys., 153 (1993), 297-320.
doi: 10.1007/BF02096645. |
[35] |
A. Soffer and M. I. Weinstein,
Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math., 136 (1999), 9-74.
doi: 10.1007/s002220050303. |
[36] |
W. A. Strauss, Nonlinear Wave Equations, vol. 73 of CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1989.
doi: 10.1090/cbms/073. |
[37] |
M. I. Weinstein,
Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.
doi: 10.1137/0516034. |
[38] |
M. I. Weinstein, Localized states and dynamics in the nonlinear Schrödinger / Gross–Pitaevskii equation, Dynamics of Partial Differential Equations. Frontiers in Applied Dynamical Systems: Reviews and Tutorials, vol 3. Springer, Cham. 41–79.
doi: 10.1007/978-3-319-19935-1_2. |
[39] |
J. A. Wolf, Harmonic Analysis on Commutative Spaces, vol. 142 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2007.
doi: 10.1090/surv/142. |
[1] |
Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328 |
[2] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[3] |
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298 |
[4] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[5] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020376 |
[6] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[7] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[8] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[9] |
Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021008 |
[10] |
Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264 |
[11] |
Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021017 |
[12] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002 |
[13] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[14] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[15] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[16] |
Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020456 |
[17] |
Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260 |
[18] |
Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323 |
[19] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021022 |
[20] |
Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]