We will extend the topological Gromov-Hausdorff stability [
Citation: |
[1] |
D. V. Anosov, Roughness of geodesic flows on compact Riemannian manifolds of negative curvature, Dokl. Akad. Nauk SSSR, 145 (1962), 707-709.
![]() ![]() |
[2] |
A. Arbieto and C. A. Morales Rojas, Topological stability from Gromov-Hausdorff viewpoint, Discrete Contin. Dyn. Syst., 37 (2017), 3531-3544.
doi: 10.3934/dcds.2017151.![]() ![]() ![]() |
[3] |
D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/033.![]() ![]() ![]() |
[4] |
N.-P. Chung and K. Lee, Topological stability and pseudo-orbit tracing property of group actions, Proc. Amer. Math. Soc., 146 (2018), 1047-1057.
doi: 10.1090/proc/13654.![]() ![]() ![]() |
[5] |
M. Dong, Group Actions from Measure Theoretical Viewpoint, PhD. thesis, Chungnam National University in Daejeon, 2018.
![]() |
[6] |
K. Fukaya, Collapsing of Riemannian manifolds and eigenvalues of Laplace operator, Invent. Math., 87 (1987), 517-547.
doi: 10.1007/BF01389241.![]() ![]() ![]() |
[7] |
M. Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53-73.
![]() ![]() |
[8] |
A. M. Lyapunov, The general problem of the stability of motion, Internat. J. Control, 55 (1992), 521-790.
doi: 10.1080/00207179208934253.![]() ![]() ![]() |
[9] |
A. V. Osipov and S. B. Tikhomirov, Shadowing for actions of some finitely generated groups, Dyn. Syst., 29 (2014), 337-351.
doi: 10.1080/14689367.2014.902037.![]() ![]() ![]() |
[10] |
S. Y. Pilyugin and S. B. Tikhomirov, Shadowing in actions of some Abelian groups, Fund. Math., 179 (2003), 83-96.
doi: 10.4064/fm179-1-7.![]() ![]() ![]() |
[11] |
P. Walters, On the pseudo-orbit tracing property and its relationship to stability, in The Structure of Attractors in Dynamical Systems, Lecture Notes in Math., 668, Springer, Berlin, 1978,231–244.
doi: 10.1007/BFb0101795.![]() ![]() ![]() |