\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Gromov-Hausdorff stability for group actions

KL and MD were supported by the NRF grant funded by the Korea government (MSIT)(NRF-2018R1A2B3001457). CAM was partially supported by the NRF Brain Pool Grant funded by the Korea government and CNPq from Brazil

Abstract Full Text(HTML) Related Papers Cited by
  • We will extend the topological Gromov-Hausdorff stability [2] from homeomorphisms to finitely generated actions. We prove that if an action is expansive and has the shadowing property, then it is topologically GH-stable. From this we derive examples of topologically GH-stable actions of the discrete Heisenberg group on tori. Finally, we prove that the topological GH-stability is an invariant under isometric conjugacy.

    Mathematics Subject Classification: Primary: 37B25; Secondary: 53C23.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] D. V. Anosov, Roughness of geodesic flows on compact Riemannian manifolds of negative curvature, Dokl. Akad. Nauk SSSR, 145 (1962), 707-709. 
    [2] A. Arbieto and C. A. Morales Rojas, Topological stability from Gromov-Hausdorff viewpoint, Discrete Contin. Dyn. Syst., 37 (2017), 3531-3544.  doi: 10.3934/dcds.2017151.
    [3] D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, Providence, RI, 2001. doi: 10.1090/gsm/033.
    [4] N.-P. Chung and K. Lee, Topological stability and pseudo-orbit tracing property of group actions, Proc. Amer. Math. Soc., 146 (2018), 1047-1057.  doi: 10.1090/proc/13654.
    [5] M. Dong, Group Actions from Measure Theoretical Viewpoint, PhD. thesis, Chungnam National University in Daejeon, 2018.
    [6] K. Fukaya, Collapsing of Riemannian manifolds and eigenvalues of Laplace operator, Invent. Math., 87 (1987), 517-547.  doi: 10.1007/BF01389241.
    [7] M. Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53-73. 
    [8] A. M. Lyapunov, The general problem of the stability of motion, Internat. J. Control, 55 (1992), 521-790.  doi: 10.1080/00207179208934253.
    [9] A. V. Osipov and S. B. Tikhomirov, Shadowing for actions of some finitely generated groups, Dyn. Syst., 29 (2014), 337-351.  doi: 10.1080/14689367.2014.902037.
    [10] S. Y. Pilyugin and S. B. Tikhomirov, Shadowing in actions of some Abelian groups, Fund. Math., 179 (2003), 83-96.  doi: 10.4064/fm179-1-7.
    [11] P. Walters, On the pseudo-orbit tracing property and its relationship to stability, in The Structure of Attractors in Dynamical Systems, Lecture Notes in Math., 668, Springer, Berlin, 1978,231–244. doi: 10.1007/BFb0101795.
  • 加载中
SHARE

Article Metrics

HTML views(530) PDF downloads(356) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return