-
Previous Article
Mean-square random invariant manifolds for stochastic differential equations
- DCDS Home
- This Issue
-
Next Article
Global large solutions and optimal time-decay estimates to the Korteweg system
A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system
1. | Department of Mathematics, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama, 338-8570, Japan |
2. | Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan |
In this paper, we consider the quadratic nonlinear Schrödinger system in three space dimensions. Our aim is to obtain sharp scattering criteria. Because of the mass-subcritical nature, it is difficult to do so in terms of conserved quantities. The corresponding single equation is studied by the second author and a sharp scattering criterion is established by introducing a distance from a trivial scattering solution, the zero solution. By the structure of the nonlinearity we are dealing with, the system admits a scattering solution which is a pair of the zero function and a linear Schrödinger flow. Taking this fact into account, we introduce a new optimizing quantity and give a sharp scattering criterion in terms of it.
References:
[1] |
T. Cazenave and F. B. Weissler,
Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147 (1992), 75-100.
doi: 10.1007/BF02099529. |
[2] |
M. Christ, J. Colliander and T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, preprint, arXiv: math/0311048. |
[3] |
M. Colin, Th. Colin and M. Ohta,
Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2211-2226.
doi: 10.1016/j.anihpc.2009.01.011. |
[4] |
V. D. Dinh, Existence, stability of standing waves and the characterization of finite time blow-up solutions for a system NLS with quadratic interaction, Nonlinear Anal., 190 (2020), 111589, 39 pp.
doi: 10.1016/j.na.2019.111589. |
[5] |
B. Dodson,
Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, Adv. Math., 285 (2015), 1589-1618.
doi: 10.1016/j.aim.2015.04.030. |
[6] |
J. Ginibre, T. Ozawa and G. Velo,
On the existence of the wave operators for a class of nonlinear Schrödinger equations, Ann. Inst. H. Poincar Phys. Théor., 60 (1994), 211-239.
|
[7] |
J. Ginibre and G. Velo,
Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., 144 (1992), 163-188.
doi: 10.1007/BF02099195. |
[8] |
M. Hamano, Global dynamics below the ground state for the quadratic Schrödinger system in 5d, preprint, arXiv: 1805.12245. |
[9] |
N. Hayashi, C. Li and T. Ozawa,
Small data scattering for a system of nonlinear Schrödinger equations, Differ. Equ. Appl., 3 (2011), 415-426.
doi: 10.7153/dea-03-26. |
[10] |
N. Hayashi, T. Ozawa and K. Tanaka,
On a system of nonlinear Schrödinger equations with quadratic interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 661-690.
doi: 10.1016/j.anihpc.2012.10.007. |
[11] |
R. A. Hunt, On $L(p, q)$ spaces, Enseignement Math. (2), 12 (1966), 249–276. |
[12] |
T. Inui, N. Kishimoto and K. Nishimura,
Scattering for a mass critical NLS system below the ground state with and without mass-resonance condition, Discrete Contin. Dyn. Syst., 39 (2019), 6299-6353.
doi: 10.3934/dcds.2019275. |
[13] |
T. Kato, An $L^{q, r}$-theory for nonlinear Schrödinger equations, Spectral and scattering theory and applications, Adv. Stud. Pure Math., 23, Math. Soc. Japan, Tokyo, (1994), 223–238.
doi: 10.2969/aspm/02310223. |
[14] |
M. Keel and T. Tao,
Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.
doi: 10.1353/ajm.1998.0039. |
[15] |
C. E. Kenig and F. Merle,
Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.
doi: 10.1007/s00222-006-0011-4. |
[16] |
R. Killip, S. Masaki, J. Murphy and M. Visan, Large data mass-subcritical NLS: critical weighted bounds imply scattering, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Art. 38, 33 pp.
doi: 10.1007/s00030-017-0463-9. |
[17] |
R. Killip, S. Masaki, J. Murphy and M. Visan,
The radial mass-subcritical NLS in negative order Sobolev spaces, Discrete Contin. Dyn. Syst., 39 (2019), 553-583.
doi: 10.3934/dcds.2019023. |
[18] |
R. Killip, T. Tao and M. Visan,
The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS), 11 (2009), 1203-1258.
doi: 10.4171/JEMS/180. |
[19] |
R. Killip, M. Visan and X. Zhang,
The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher, Anal. PDE, 1 (2008), 229-266.
doi: 10.2140/apde.2008.1.229. |
[20] |
S. Masaki,
A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 14 (2015), 1481-1531.
doi: 10.3934/cpaa.2015.14.1481. |
[21] |
S. Masaki,
On minimal nonscattering solution for focusing mass-subcritical nonlinear Schrödinger equation, Comm. Partial Differential Equations, 42 (2017), 626-653.
doi: 10.1080/03605302.2017.1286672. |
[22] |
S. Masaki, Two minimization problems on non-scattering solutions to mass-subcritical nonlinear Schrödinger equation, preprint, arXiv: 1605.09234. |
[23] |
S. Masaki and J.-I. Segata,
Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg-de Vries equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 283-326.
doi: 10.1016/j.anihpc.2017.04.003. |
[24] |
K. Nakanishi and T. Ozawa,
Remarks on scattering for nonlinear Schrodinger equations, NoDEA Nonlinear Differential Equations Appl., 9 (2002), 45-68.
doi: 10.1007/s00030-002-8118-9. |
[25] |
R. O'Neil,
Convolution operators and L(p, q) spaces, Duke Math. J., 30 (1963), 129-142.
doi: 10.1215/S0012-7094-63-03015-1. |
[26] |
R. S. Strichartz,
Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.
doi: 10.1215/S0012-7094-77-04430-1. |
show all references
References:
[1] |
T. Cazenave and F. B. Weissler,
Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147 (1992), 75-100.
doi: 10.1007/BF02099529. |
[2] |
M. Christ, J. Colliander and T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, preprint, arXiv: math/0311048. |
[3] |
M. Colin, Th. Colin and M. Ohta,
Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2211-2226.
doi: 10.1016/j.anihpc.2009.01.011. |
[4] |
V. D. Dinh, Existence, stability of standing waves and the characterization of finite time blow-up solutions for a system NLS with quadratic interaction, Nonlinear Anal., 190 (2020), 111589, 39 pp.
doi: 10.1016/j.na.2019.111589. |
[5] |
B. Dodson,
Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, Adv. Math., 285 (2015), 1589-1618.
doi: 10.1016/j.aim.2015.04.030. |
[6] |
J. Ginibre, T. Ozawa and G. Velo,
On the existence of the wave operators for a class of nonlinear Schrödinger equations, Ann. Inst. H. Poincar Phys. Théor., 60 (1994), 211-239.
|
[7] |
J. Ginibre and G. Velo,
Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., 144 (1992), 163-188.
doi: 10.1007/BF02099195. |
[8] |
M. Hamano, Global dynamics below the ground state for the quadratic Schrödinger system in 5d, preprint, arXiv: 1805.12245. |
[9] |
N. Hayashi, C. Li and T. Ozawa,
Small data scattering for a system of nonlinear Schrödinger equations, Differ. Equ. Appl., 3 (2011), 415-426.
doi: 10.7153/dea-03-26. |
[10] |
N. Hayashi, T. Ozawa and K. Tanaka,
On a system of nonlinear Schrödinger equations with quadratic interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 661-690.
doi: 10.1016/j.anihpc.2012.10.007. |
[11] |
R. A. Hunt, On $L(p, q)$ spaces, Enseignement Math. (2), 12 (1966), 249–276. |
[12] |
T. Inui, N. Kishimoto and K. Nishimura,
Scattering for a mass critical NLS system below the ground state with and without mass-resonance condition, Discrete Contin. Dyn. Syst., 39 (2019), 6299-6353.
doi: 10.3934/dcds.2019275. |
[13] |
T. Kato, An $L^{q, r}$-theory for nonlinear Schrödinger equations, Spectral and scattering theory and applications, Adv. Stud. Pure Math., 23, Math. Soc. Japan, Tokyo, (1994), 223–238.
doi: 10.2969/aspm/02310223. |
[14] |
M. Keel and T. Tao,
Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.
doi: 10.1353/ajm.1998.0039. |
[15] |
C. E. Kenig and F. Merle,
Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.
doi: 10.1007/s00222-006-0011-4. |
[16] |
R. Killip, S. Masaki, J. Murphy and M. Visan, Large data mass-subcritical NLS: critical weighted bounds imply scattering, NoDEA Nonlinear Differential Equations Appl., 24 (2017), Art. 38, 33 pp.
doi: 10.1007/s00030-017-0463-9. |
[17] |
R. Killip, S. Masaki, J. Murphy and M. Visan,
The radial mass-subcritical NLS in negative order Sobolev spaces, Discrete Contin. Dyn. Syst., 39 (2019), 553-583.
doi: 10.3934/dcds.2019023. |
[18] |
R. Killip, T. Tao and M. Visan,
The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS), 11 (2009), 1203-1258.
doi: 10.4171/JEMS/180. |
[19] |
R. Killip, M. Visan and X. Zhang,
The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher, Anal. PDE, 1 (2008), 229-266.
doi: 10.2140/apde.2008.1.229. |
[20] |
S. Masaki,
A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 14 (2015), 1481-1531.
doi: 10.3934/cpaa.2015.14.1481. |
[21] |
S. Masaki,
On minimal nonscattering solution for focusing mass-subcritical nonlinear Schrödinger equation, Comm. Partial Differential Equations, 42 (2017), 626-653.
doi: 10.1080/03605302.2017.1286672. |
[22] |
S. Masaki, Two minimization problems on non-scattering solutions to mass-subcritical nonlinear Schrödinger equation, preprint, arXiv: 1605.09234. |
[23] |
S. Masaki and J.-I. Segata,
Existence of a minimal non-scattering solution to the mass-subcritical generalized Korteweg-de Vries equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 283-326.
doi: 10.1016/j.anihpc.2017.04.003. |
[24] |
K. Nakanishi and T. Ozawa,
Remarks on scattering for nonlinear Schrodinger equations, NoDEA Nonlinear Differential Equations Appl., 9 (2002), 45-68.
doi: 10.1007/s00030-002-8118-9. |
[25] |
R. O'Neil,
Convolution operators and L(p, q) spaces, Duke Math. J., 30 (1963), 129-142.
doi: 10.1215/S0012-7094-63-03015-1. |
[26] |
R. S. Strichartz,
Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705-714.
doi: 10.1215/S0012-7094-77-04430-1. |
[1] |
Satoshi Masaki. A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1481-1531. doi: 10.3934/cpaa.2015.14.1481 |
[2] |
Xiaoyu Zeng. Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1749-1762. doi: 10.3934/dcds.2017073 |
[3] |
Rowan Killip, Satoshi Masaki, Jason Murphy, Monica Visan. The radial mass-subcritical NLS in negative order Sobolev spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 553-583. doi: 10.3934/dcds.2019023 |
[4] |
Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003 |
[5] |
Thierry Cazenave, Zheng Han. Asymptotic behavior for a Schrödinger equation with nonlinear subcritical dissipation. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4801-4819. doi: 10.3934/dcds.2020202 |
[6] |
Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563 |
[7] |
Van Duong Dinh. A unified approach for energy scattering for focusing nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6441-6471. doi: 10.3934/dcds.2020286 |
[8] |
Xing Cheng, Ze Li, Lifeng Zhao. Scattering of solutions to the nonlinear Schrödinger equations with regular potentials. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 2999-3023. doi: 10.3934/dcds.2017129 |
[9] |
Alp Eden, Elİf Kuz. Almost cubic nonlinear Schrödinger equation: Existence, uniqueness and scattering. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1803-1823. doi: 10.3934/cpaa.2009.8.1803 |
[10] |
Yohei Yamazaki. Transverse instability for a system of nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 565-588. doi: 10.3934/dcdsb.2014.19.565 |
[11] |
Myeongju Chae, Sunggeum Hong, Sanghyuk Lee. Mass concentration for the $L^2$-critical nonlinear Schrödinger equations of higher orders. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 909-928. doi: 10.3934/dcds.2011.29.909 |
[12] |
Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure and Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034 |
[13] |
Younghun Hong, Sangdon Jin. Orbital stability for the mass-critical and supercritical pseudo-relativistic nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022010 |
[14] |
Giuseppe Maria Coclite, Helge Holden. Ground states of the Schrödinger-Maxwell system with dirac mass: Existence and asymptotics. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 117-132. doi: 10.3934/dcds.2010.27.117 |
[15] |
Benedetta Noris, Hugo Tavares, Gianmaria Verzini. Stable solitary waves with prescribed $L^2$-mass for the cubic Schrödinger system with trapping potentials. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 6085-6112. doi: 10.3934/dcds.2015.35.6085 |
[16] |
Shaoming Guo, Xianfeng Ren, Baoxiang Wang. Local well-posedness for the derivative nonlinear Schrödinger equation with $ L^2 $-subcritical data. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4207-4253. doi: 10.3934/dcds.2021034 |
[17] |
Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure and Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831 |
[18] |
Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems and Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183 |
[19] |
Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328 |
[20] |
J. Colliander, Justin Holmer, Monica Visan, Xiaoyi Zhang. Global existence and scattering for rough solutions to generalized nonlinear Schrödinger equations on $R$. Communications on Pure and Applied Analysis, 2008, 7 (3) : 467-489. doi: 10.3934/cpaa.2008.7.467 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]