We develop a theory of mean-square random invariant manifolds for mean-square random dynamical systems generated by stochastic differential equations. This theory is applicable to stochastic partial differential equations driven by nonlinear noise. The existence of mean-square random invariant unstable manifolds is proved by the Lyapunov-Perron method based on a backward stochastic differential equation involving the conditional expectation with respect to a filtration. The existence of mean-square random stable invariant sets is also established but the existence of mean-square random stable invariant manifolds remains open.
Citation: |
[1] |
L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-12878-7.![]() ![]() ![]() |
[2] |
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.
![]() ![]() |
[3] |
P. W. Bates, K. Lu and C. Zeng, Existence and Persistence of Invariant Manifolds for Semiflows in Banach Space, Memoirs of the AMS, Vol. 135, American Mathematical Society, Providence, 1998.
doi: 10.1090/memo/0645.![]() ![]() ![]() |
[4] |
A. Bensoussan and F. Flandoli, Stochastic inertial manifold, Stochastics and Stochastic Rep., 53 (1995), 13-39.
doi: 10.1080/17442509508833981.![]() ![]() ![]() |
[5] |
P. Boxler, A stochastic version of center manifold theory, Probab. Theory Related Fields, 83 (1989), 509-545.
doi: 10.1007/BF01845701.![]() ![]() ![]() |
[6] |
P. Brune and B. Schmalfuss, Inertial manifolds for stochastic PDE with dynamical boundary conditions, Communications on Pure and Applied Analysis, 10 (2011), 831-846.
doi: 10.3934/cpaa.2011.10.831.![]() ![]() ![]() |
[7] |
T. Caraballo, I. Chueshov and J. A. Langa, Existence of invariant manifolds for coupled parabolic and hyperbolic stochastic partial differential equations, Nonlinearity, 18 (2005), 747-767.
doi: 10.1088/0951-7715/18/2/015.![]() ![]() ![]() |
[8] |
T. Caraballo, J. Duan, K. Lu and B. Schmalfuss, Invariant manifolds for random and stochastic partial differential equations, Advanced Nonlinear Studies, 10 (2010), 23-52.
doi: 10.1515/ans-2010-0102.![]() ![]() ![]() |
[9] |
X. Chen, A. J. Roberts and J. Duan, Center manifolds for infinite dimensional random dynamical systems, Dynamical Systems, 34 (2019), 334-355.
doi: 10.1080/14689367.2018.1531972.![]() ![]() ![]() |
[10] |
I. D. Chueshov and M. Scheutzow, Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations, J. Dynamics and Differential Equations, 13 (2001), 355-380.
doi: 10.1023/A:1016684108862.![]() ![]() ![]() |
[11] |
I. Chueshov, M. Scheutzow and B. Schmalfuss, Continuity properties of inertial manifolds for stochastic retarded semilinear parabolic equations, 353-375, in Interacting Stochastic Systems by J. Deuschel and A. Greven, 2005, Springer, Berlin.
doi: 10.1007/3-540-27110-4_16.![]() ![]() ![]() |
[12] |
I. D. Chueshov and T. V. Girya, Inertial manifolds for stochastic dissipative dynamical systems, Doklady Acad. Sci. Ukraine, 7 (1994), 42-45.
![]() ![]() |
[13] |
I. D. Chueshov and T. V. Girya, Inertial manifolds and forms for semilinear parabolic equations subjected to additive white noise, Lett. Math. Phys., 34 (1995), 69-76.
doi: 10.1007/BF00739376.![]() ![]() ![]() |
[14] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimension, Second Edition, Cambridge University Press, Cambridge, 2014.
doi: 10.1017/CBO9781107295513.![]() ![]() ![]() |
[15] |
J. Duan, K. Lu and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31 (2003), 2109-2135.
doi: 10.1214/aop/1068646380.![]() ![]() ![]() |
[16] |
J. Duan, K. Lu and B. Schmalfuss, Smooth stable and unstable manifolds for stochastic evolutionary equations, J. Dynam. Differential Equations, 16 (2004), 949-972.
doi: 10.1007/s10884-004-7830-z.![]() ![]() ![]() |
[17] |
M. J. Garrido-Atienza, K. Lu and B. Schmalfuss, Unstable invariant manifolds for stochastic PDEs driven by a fractional Brownian motion, J. Differential Equations, 248 (2010), 1637-1667.
doi: 10.1016/j.jde.2009.11.006.![]() ![]() ![]() |
[18] |
T. Girya and I. D. Chueshov, Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems, Sbornik: Mathematics, 186 (1995), 29-46.
doi: 10.1070/SM1995v186n01ABEH000002.![]() ![]() ![]() |
[19] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol. 840, Springer-Verlag, New York, 1981.
![]() ![]() |
[20] |
Y. Hu and S. Peng, Adapted solution of a backward semilinear stochastic evolution equation, Stochastic Analysis and Applications, 9 (1991), 445-459.
doi: 10.1080/07362999108809250.![]() ![]() ![]() |
[21] |
P. E. Kloeden and T. Lorenz, Mean-square random dynamical systems, J. Differential Equations, 253 (2012), 1422-1438.
doi: 10.1016/j.jde.2012.05.016.![]() ![]() ![]() |
[22] |
H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, Cambridge, 1990.
![]() ![]() |
[23] |
W. Li and K. Lu, Sternberg theorems for random dynamical systems, Comm. Pure Appl. Math., 58 (2005), 941-988.
doi: 10.1002/cpa.20083.![]() ![]() ![]() |
[24] |
Z. Lian and K. Lu, Lyapunov Exponents and Invariant Manifolds for Infinite-Dimensional Random Dynamical Systems in a Banach Space, Mem. Amer. Math. Soc., 206 2010, No. 967,106 pp.
doi: 10.1090/S0065-9266-10-00574-0.![]() ![]() ![]() |
[25] |
K. Lu and B. Schmalfuss, Invariant manifolds for stochastic wave equations, J. Differential Equations, 236 (2007), 460-492.
doi: 10.1016/j.jde.2006.09.024.![]() ![]() ![]() |
[26] |
S.-E. A. Mohammed and M. K. R. Scheutzow, The stable manifold theorem for stochastic differential equations, Ann. Probab., 27 (1999), 615-652.
doi: 10.1214/aop/1022677380.![]() ![]() ![]() |
[27] |
D. Ruelle, Characteristic exponents and invariant manifolds in Hilbert space, Annals of Mathematics, 115 (1982), 243-290.
doi: 10.2307/1971392.![]() ![]() ![]() |
[28] |
B. Wang, Weak pullback attractors for mean random dynamical systems in Bochner spaces, Journal of Dynamics and Differential Equations, 31 (2019), 2177-2204.
doi: 10.1007/s10884-018-9696-5.![]() ![]() ![]() |
[29] |
B. Wang, Periodic and almost periodic random inertial manifolds for non-autonomous stochastic equations, Continuous and Distributed Systems II, 189–208, Studies in Systems, Decision and Control, Vol 30, Springer, Cham, 2015.
doi: 10.1007/978-3-319-19075-4_11.![]() ![]() ![]() |
[30] |
T. Wanner, Linearization of random dynamical systems, Dynamics Reported, 4, Springer, Berlin, 1995., 203–269.
doi: 10.1007/978-3-642-61215-2_4.![]() ![]() ![]() |