-
Previous Article
Global graph of metric entropy on expanding Blaschke products
- DCDS Home
- This Issue
-
Next Article
A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system
Mean-square random invariant manifolds for stochastic differential equations
Department of Mathematics, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA |
We develop a theory of mean-square random invariant manifolds for mean-square random dynamical systems generated by stochastic differential equations. This theory is applicable to stochastic partial differential equations driven by nonlinear noise. The existence of mean-square random invariant unstable manifolds is proved by the Lyapunov-Perron method based on a backward stochastic differential equation involving the conditional expectation with respect to a filtration. The existence of mean-square random stable invariant sets is also established but the existence of mean-square random stable invariant manifolds remains open.
References:
[1] |
L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-12878-7. |
[2] |
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992. |
[3] |
P. W. Bates, K. Lu and C. Zeng, Existence and Persistence of Invariant Manifolds for Semiflows in Banach Space, Memoirs of the AMS, Vol. 135, American Mathematical Society, Providence, 1998.
doi: 10.1090/memo/0645. |
[4] |
A. Bensoussan and F. Flandoli,
Stochastic inertial manifold, Stochastics and Stochastic Rep., 53 (1995), 13-39.
doi: 10.1080/17442509508833981. |
[5] |
P. Boxler,
A stochastic version of center manifold theory, Probab. Theory Related Fields, 83 (1989), 509-545.
doi: 10.1007/BF01845701. |
[6] |
P. Brune and B. Schmalfuss,
Inertial manifolds for stochastic PDE with dynamical boundary conditions, Communications on Pure and Applied Analysis, 10 (2011), 831-846.
doi: 10.3934/cpaa.2011.10.831. |
[7] |
T. Caraballo, I. Chueshov and J. A. Langa,
Existence of invariant manifolds for coupled parabolic and hyperbolic stochastic partial differential equations, Nonlinearity, 18 (2005), 747-767.
doi: 10.1088/0951-7715/18/2/015. |
[8] |
T. Caraballo, J. Duan, K. Lu and B. Schmalfuss,
Invariant manifolds for random and stochastic partial differential equations, Advanced Nonlinear Studies, 10 (2010), 23-52.
doi: 10.1515/ans-2010-0102. |
[9] |
X. Chen, A. J. Roberts and J. Duan,
Center manifolds for infinite dimensional random dynamical systems, Dynamical Systems, 34 (2019), 334-355.
doi: 10.1080/14689367.2018.1531972. |
[10] |
I. D. Chueshov and M. Scheutzow,
Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations, J. Dynamics and Differential Equations, 13 (2001), 355-380.
doi: 10.1023/A:1016684108862. |
[11] |
I. Chueshov, M. Scheutzow and B. Schmalfuss, Continuity properties of inertial manifolds for stochastic retarded semilinear parabolic equations, 353-375, in Interacting Stochastic Systems by J. Deuschel and A. Greven, 2005, Springer, Berlin.
doi: 10.1007/3-540-27110-4_16. |
[12] |
I. D. Chueshov and T. V. Girya,
Inertial manifolds for stochastic dissipative dynamical systems, Doklady Acad. Sci. Ukraine, 7 (1994), 42-45.
|
[13] |
I. D. Chueshov and T. V. Girya,
Inertial manifolds and forms for semilinear parabolic equations subjected to additive white noise, Lett. Math. Phys., 34 (1995), 69-76.
doi: 10.1007/BF00739376. |
[14] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimension, Second Edition, Cambridge University Press, Cambridge, 2014.
doi: 10.1017/CBO9781107295513.![]() ![]() |
[15] |
J. Duan, K. Lu and B. Schmalfuss,
Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31 (2003), 2109-2135.
doi: 10.1214/aop/1068646380. |
[16] |
J. Duan, K. Lu and B. Schmalfuss,
Smooth stable and unstable manifolds for stochastic evolutionary equations, J. Dynam. Differential Equations, 16 (2004), 949-972.
doi: 10.1007/s10884-004-7830-z. |
[17] |
M. J. Garrido-Atienza, K. Lu and B. Schmalfuss,
Unstable invariant manifolds for stochastic PDEs driven by a fractional Brownian motion, J. Differential Equations, 248 (2010), 1637-1667.
doi: 10.1016/j.jde.2009.11.006. |
[18] |
T. Girya and I. D. Chueshov,
Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems, Sbornik: Mathematics, 186 (1995), 29-46.
doi: 10.1070/SM1995v186n01ABEH000002. |
[19] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol. 840, Springer-Verlag, New York, 1981. |
[20] |
Y. Hu and S. Peng,
Adapted solution of a backward semilinear stochastic evolution equation, Stochastic Analysis and Applications, 9 (1991), 445-459.
doi: 10.1080/07362999108809250. |
[21] |
P. E. Kloeden and T. Lorenz,
Mean-square random dynamical systems, J. Differential Equations, 253 (2012), 1422-1438.
doi: 10.1016/j.jde.2012.05.016. |
[22] |
H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, Cambridge, 1990.
![]() |
[23] |
W. Li and K. Lu,
Sternberg theorems for random dynamical systems, Comm. Pure Appl. Math., 58 (2005), 941-988.
doi: 10.1002/cpa.20083. |
[24] |
Z. Lian and K. Lu, Lyapunov Exponents and Invariant Manifolds for Infinite-Dimensional Random Dynamical Systems in a Banach Space, Mem. Amer. Math. Soc., 206 2010, No. 967,106 pp.
doi: 10.1090/S0065-9266-10-00574-0. |
[25] |
K. Lu and B. Schmalfuss,
Invariant manifolds for stochastic wave equations, J. Differential Equations, 236 (2007), 460-492.
doi: 10.1016/j.jde.2006.09.024. |
[26] |
S.-E. A. Mohammed and M. K. R. Scheutzow,
The stable manifold theorem for stochastic differential equations, Ann. Probab., 27 (1999), 615-652.
doi: 10.1214/aop/1022677380. |
[27] |
D. Ruelle,
Characteristic exponents and invariant manifolds in Hilbert space, Annals of Mathematics, 115 (1982), 243-290.
doi: 10.2307/1971392. |
[28] |
B. Wang,
Weak pullback attractors for mean random dynamical systems in Bochner spaces, Journal of Dynamics and Differential Equations, 31 (2019), 2177-2204.
doi: 10.1007/s10884-018-9696-5. |
[29] |
B. Wang, Periodic and almost periodic random inertial manifolds for non-autonomous stochastic equations, Continuous and Distributed Systems II, 189–208, Studies in Systems, Decision and Control, Vol 30, Springer, Cham, 2015.
doi: 10.1007/978-3-319-19075-4_11. |
[30] |
T. Wanner, Linearization of random dynamical systems, Dynamics Reported, 4, Springer, Berlin, 1995., 203–269.
doi: 10.1007/978-3-642-61215-2_4. |
show all references
References:
[1] |
L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-12878-7. |
[2] |
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992. |
[3] |
P. W. Bates, K. Lu and C. Zeng, Existence and Persistence of Invariant Manifolds for Semiflows in Banach Space, Memoirs of the AMS, Vol. 135, American Mathematical Society, Providence, 1998.
doi: 10.1090/memo/0645. |
[4] |
A. Bensoussan and F. Flandoli,
Stochastic inertial manifold, Stochastics and Stochastic Rep., 53 (1995), 13-39.
doi: 10.1080/17442509508833981. |
[5] |
P. Boxler,
A stochastic version of center manifold theory, Probab. Theory Related Fields, 83 (1989), 509-545.
doi: 10.1007/BF01845701. |
[6] |
P. Brune and B. Schmalfuss,
Inertial manifolds for stochastic PDE with dynamical boundary conditions, Communications on Pure and Applied Analysis, 10 (2011), 831-846.
doi: 10.3934/cpaa.2011.10.831. |
[7] |
T. Caraballo, I. Chueshov and J. A. Langa,
Existence of invariant manifolds for coupled parabolic and hyperbolic stochastic partial differential equations, Nonlinearity, 18 (2005), 747-767.
doi: 10.1088/0951-7715/18/2/015. |
[8] |
T. Caraballo, J. Duan, K. Lu and B. Schmalfuss,
Invariant manifolds for random and stochastic partial differential equations, Advanced Nonlinear Studies, 10 (2010), 23-52.
doi: 10.1515/ans-2010-0102. |
[9] |
X. Chen, A. J. Roberts and J. Duan,
Center manifolds for infinite dimensional random dynamical systems, Dynamical Systems, 34 (2019), 334-355.
doi: 10.1080/14689367.2018.1531972. |
[10] |
I. D. Chueshov and M. Scheutzow,
Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations, J. Dynamics and Differential Equations, 13 (2001), 355-380.
doi: 10.1023/A:1016684108862. |
[11] |
I. Chueshov, M. Scheutzow and B. Schmalfuss, Continuity properties of inertial manifolds for stochastic retarded semilinear parabolic equations, 353-375, in Interacting Stochastic Systems by J. Deuschel and A. Greven, 2005, Springer, Berlin.
doi: 10.1007/3-540-27110-4_16. |
[12] |
I. D. Chueshov and T. V. Girya,
Inertial manifolds for stochastic dissipative dynamical systems, Doklady Acad. Sci. Ukraine, 7 (1994), 42-45.
|
[13] |
I. D. Chueshov and T. V. Girya,
Inertial manifolds and forms for semilinear parabolic equations subjected to additive white noise, Lett. Math. Phys., 34 (1995), 69-76.
doi: 10.1007/BF00739376. |
[14] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimension, Second Edition, Cambridge University Press, Cambridge, 2014.
doi: 10.1017/CBO9781107295513.![]() ![]() |
[15] |
J. Duan, K. Lu and B. Schmalfuss,
Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31 (2003), 2109-2135.
doi: 10.1214/aop/1068646380. |
[16] |
J. Duan, K. Lu and B. Schmalfuss,
Smooth stable and unstable manifolds for stochastic evolutionary equations, J. Dynam. Differential Equations, 16 (2004), 949-972.
doi: 10.1007/s10884-004-7830-z. |
[17] |
M. J. Garrido-Atienza, K. Lu and B. Schmalfuss,
Unstable invariant manifolds for stochastic PDEs driven by a fractional Brownian motion, J. Differential Equations, 248 (2010), 1637-1667.
doi: 10.1016/j.jde.2009.11.006. |
[18] |
T. Girya and I. D. Chueshov,
Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems, Sbornik: Mathematics, 186 (1995), 29-46.
doi: 10.1070/SM1995v186n01ABEH000002. |
[19] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol. 840, Springer-Verlag, New York, 1981. |
[20] |
Y. Hu and S. Peng,
Adapted solution of a backward semilinear stochastic evolution equation, Stochastic Analysis and Applications, 9 (1991), 445-459.
doi: 10.1080/07362999108809250. |
[21] |
P. E. Kloeden and T. Lorenz,
Mean-square random dynamical systems, J. Differential Equations, 253 (2012), 1422-1438.
doi: 10.1016/j.jde.2012.05.016. |
[22] |
H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, Cambridge, 1990.
![]() |
[23] |
W. Li and K. Lu,
Sternberg theorems for random dynamical systems, Comm. Pure Appl. Math., 58 (2005), 941-988.
doi: 10.1002/cpa.20083. |
[24] |
Z. Lian and K. Lu, Lyapunov Exponents and Invariant Manifolds for Infinite-Dimensional Random Dynamical Systems in a Banach Space, Mem. Amer. Math. Soc., 206 2010, No. 967,106 pp.
doi: 10.1090/S0065-9266-10-00574-0. |
[25] |
K. Lu and B. Schmalfuss,
Invariant manifolds for stochastic wave equations, J. Differential Equations, 236 (2007), 460-492.
doi: 10.1016/j.jde.2006.09.024. |
[26] |
S.-E. A. Mohammed and M. K. R. Scheutzow,
The stable manifold theorem for stochastic differential equations, Ann. Probab., 27 (1999), 615-652.
doi: 10.1214/aop/1022677380. |
[27] |
D. Ruelle,
Characteristic exponents and invariant manifolds in Hilbert space, Annals of Mathematics, 115 (1982), 243-290.
doi: 10.2307/1971392. |
[28] |
B. Wang,
Weak pullback attractors for mean random dynamical systems in Bochner spaces, Journal of Dynamics and Differential Equations, 31 (2019), 2177-2204.
doi: 10.1007/s10884-018-9696-5. |
[29] |
B. Wang, Periodic and almost periodic random inertial manifolds for non-autonomous stochastic equations, Continuous and Distributed Systems II, 189–208, Studies in Systems, Decision and Control, Vol 30, Springer, Cham, 2015.
doi: 10.1007/978-3-319-19075-4_11. |
[30] |
T. Wanner, Linearization of random dynamical systems, Dynamics Reported, 4, Springer, Berlin, 1995., 203–269.
doi: 10.1007/978-3-642-61215-2_4. |
[1] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[2] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[3] |
Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319 |
[4] |
Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080 |
[5] |
Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189 |
[6] |
Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329 |
[7] |
Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121 |
[8] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020390 |
[9] |
Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158 |
[10] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 |
[11] |
Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020370 |
[12] |
Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020168 |
[13] |
Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046 |
[14] |
Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021008 |
[15] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[16] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[17] |
Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1615-1626. doi: 10.3934/dcdsb.2020175 |
[18] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[19] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[20] |
Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028 |
2019 Impact Factor: 1.338
Tools
Article outline
[Back to Top]