    March  2021, 41(3): 1483-1506. doi: 10.3934/dcds.2020326

## Existence of nodal solutions for the sublinear Moore-Nehari differential equation

 Department of Mathematics, Faculty of Science and Engineering, Saga University, Saga, 840-8502, Japan

Received  May 2020 Revised  August 2020 Published  September 2020

Fund Project: * This work was supported by JSPS KAKENHI Grant Number 20K03686

We study the existence of symmetric and asymmetric nodal solutions for the sublinear Moore-Nehari differential equation, $u''+h(x, \lambda)|u|^{p-1}u = 0$ in $(-1, 1)$ with $u(-1) = u(1) = 0$, where $0<p<1$, $h(x, \lambda) = 0$ for $|x|<\lambda$, $h(x, \lambda) = 1$ for $\lambda\leq |x|\leq 1$ and $\lambda\in (0, 1)$ is a parameter. We call a solution $u$ symmetric if it is even or odd. For an integer $n\geq 0$, we call a solution $u$ an $n$-nodal solution if it has exactly $n$ zeros in $(-1, 1)$. For each integer $n\geq 0$ and any $\lambda\in (0, 1)$, we prove that the equation has a unique $n$-nodal symmetric solution with $u'(-1)>0$. For integers $m, n \geq 0$, we call a solution $u$ an $(m, n)$-solution if it has exactly $m$ zeros in $(-1, 0)$ and exactly $n$ zeros in $(0, 1)$. We show the existence of an $(m, n)$-solution for each $m, n$ and prove that any $(m, m)$-solution is symmetric.

Citation: Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326
##### References:
  H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, (Universitext), Springer, New York, 2011 Google Scholar  H. Brezis and L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal., 10 (1986), 55–64. doi: 10.1016/0362-546X(86)90011-8.  Google Scholar  A. Gritsans and F. Sadyrbaev, Extension of the example by Moore-Nehari, Tatra Mt. Math. Publ., 63 (2015), 115–127. doi: 10.1515/tmmp-2015-0024.  Google Scholar  P. Hartman, Ordinary Differential Equations, 2nd edition, Birkhäuser, Boston, (1982). Google Scholar  R. Kajikiya, Non-even least energy solutions of the Emden-Fowler equation, Proc. Amer. Math. Soc., 140 (2012), 1353–1362. doi: 10.1090/S0002-9939-2011-11172-9.  Google Scholar  R. Kajikiya, Non-radial least energy solutions of the generalized Hénon equation, J. Differential Equations, 252 (2012), 1987–2003. doi: 10.1016/j.jde.2011.08.032.  Google Scholar  R. Kajikiya, Non-even positive solutions of the one dimensional $p$-Laplace Emden-Fowler equation, Applied Mathematics Letters, 25 (2012), 1891–1895. doi: 10.1016/j.aml.2012.02.057.  Google Scholar  R. Kajikiya, Non-even positive solutions of the Emden-Fowler equations with sign-changing weights, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 631–642. doi: 10.1017/S0308210511001594.  Google Scholar  R. Kajikiya, Symmetric and asymmetric nodal solutions for the Moore-Nehari differential equation, Submitted for publication. Google Scholar  R. Kajikiya, I. Sim and S. Tanaka, Symmetry-breaking bifurcation for the Moore-Nehari differential equation, Nonlinear Differential Equations and Applications, 25 (2018), article 54. doi: 10.1007/s00030-018-0545-3.  Google Scholar  J. López-Gómez and P. H. Rabinowitz, Nodal solutions for a class of degenerate boundary value problems, Adv. Nonlinear Stud., 15 (2015), 253–288. doi: 10.1515/ans-2015-0201.  Google Scholar  J. López-Gómez and P. H. Rabinowitz, Nodal solutions for a class of degenerate one dimensional BVP's, Topol. Methods Nonlinear Anal., 49 (2017), 359–376. doi: 10.12775/tmna.2016.087.  Google Scholar  J. López-Gómez, M. Molina-Meyer and P. H. Rabinowitz, Global bifurcation diagrams of one node solutions in a class of degenerate boundary value problems, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 923–946. doi: 10.3934/dcdsb.2017047.  Google Scholar  J. López-Gómez and P. H. Rabinowitz, The structure of the set of $1$-node solutions of a class of degenerate BVP's, J. Differential Equations, 268 (2020), 4691–4732. doi: 10.1016/j.jde.2019.10.040.  Google Scholar  R. A. Moore and Z. Nehari, Nonoscillation theorems for a class of nonlinear differential equations, Trans. Amer. Math. Soc., 93 (1959), 30–52. doi: 10.1090/S0002-9947-1959-0111897-8.  Google Scholar  Y. Naito and S. Tanaka, On the existence of multiple solutions of the boundary value problem for nonlinear second-order differential equations, Nonlinear Anal., 56 (2004), 919–935. doi: 10.1016/j.na.2003.10.020.  Google Scholar  D. Smets, M. Willem and J. Su, Non-radial ground states for the Hénon equation, Commun. Contemp. Math., 4 (2002), 467–480. doi: 10.1142/S0219199702000725.  Google Scholar

show all references

##### References:
  H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, (Universitext), Springer, New York, 2011 Google Scholar  H. Brezis and L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal., 10 (1986), 55–64. doi: 10.1016/0362-546X(86)90011-8.  Google Scholar  A. Gritsans and F. Sadyrbaev, Extension of the example by Moore-Nehari, Tatra Mt. Math. Publ., 63 (2015), 115–127. doi: 10.1515/tmmp-2015-0024.  Google Scholar  P. Hartman, Ordinary Differential Equations, 2nd edition, Birkhäuser, Boston, (1982). Google Scholar  R. Kajikiya, Non-even least energy solutions of the Emden-Fowler equation, Proc. Amer. Math. Soc., 140 (2012), 1353–1362. doi: 10.1090/S0002-9939-2011-11172-9.  Google Scholar  R. Kajikiya, Non-radial least energy solutions of the generalized Hénon equation, J. Differential Equations, 252 (2012), 1987–2003. doi: 10.1016/j.jde.2011.08.032.  Google Scholar  R. Kajikiya, Non-even positive solutions of the one dimensional $p$-Laplace Emden-Fowler equation, Applied Mathematics Letters, 25 (2012), 1891–1895. doi: 10.1016/j.aml.2012.02.057.  Google Scholar  R. Kajikiya, Non-even positive solutions of the Emden-Fowler equations with sign-changing weights, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 631–642. doi: 10.1017/S0308210511001594.  Google Scholar  R. Kajikiya, Symmetric and asymmetric nodal solutions for the Moore-Nehari differential equation, Submitted for publication. Google Scholar  R. Kajikiya, I. Sim and S. Tanaka, Symmetry-breaking bifurcation for the Moore-Nehari differential equation, Nonlinear Differential Equations and Applications, 25 (2018), article 54. doi: 10.1007/s00030-018-0545-3.  Google Scholar  J. López-Gómez and P. H. Rabinowitz, Nodal solutions for a class of degenerate boundary value problems, Adv. Nonlinear Stud., 15 (2015), 253–288. doi: 10.1515/ans-2015-0201.  Google Scholar  J. López-Gómez and P. H. Rabinowitz, Nodal solutions for a class of degenerate one dimensional BVP's, Topol. Methods Nonlinear Anal., 49 (2017), 359–376. doi: 10.12775/tmna.2016.087.  Google Scholar  J. López-Gómez, M. Molina-Meyer and P. H. Rabinowitz, Global bifurcation diagrams of one node solutions in a class of degenerate boundary value problems, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 923–946. doi: 10.3934/dcdsb.2017047.  Google Scholar  J. López-Gómez and P. H. Rabinowitz, The structure of the set of $1$-node solutions of a class of degenerate BVP's, J. Differential Equations, 268 (2020), 4691–4732. doi: 10.1016/j.jde.2019.10.040.  Google Scholar  R. A. Moore and Z. Nehari, Nonoscillation theorems for a class of nonlinear differential equations, Trans. Amer. Math. Soc., 93 (1959), 30–52. doi: 10.1090/S0002-9947-1959-0111897-8.  Google Scholar  Y. Naito and S. Tanaka, On the existence of multiple solutions of the boundary value problem for nonlinear second-order differential equations, Nonlinear Anal., 56 (2004), 919–935. doi: 10.1016/j.na.2003.10.020.  Google Scholar  D. Smets, M. Willem and J. Su, Non-radial ground states for the Hénon equation, Commun. Contemp. Math., 4 (2002), 467–480. doi: 10.1142/S0219199702000725.  Google Scholar
  Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002  Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115  Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392  Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172  Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119  Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033  Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018  Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159  Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387  Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348  Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $q$-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440  Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118  Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016  Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162  Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371  Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $BV$ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405  Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021006  Bingyan Liu, Xiongbing Ye, Xianzhou Dong, Lei Ni. Branching improved Deep Q Networks for solving pursuit-evasion strategy solution of spacecraft. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021016  Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311  Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $L^2$-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

2019 Impact Factor: 1.338

Article outline