- Previous Article
- DCDS Home
- This Issue
-
Next Article
Existence of nodal solutions for the sublinear Moore-Nehari differential equation
Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations
1. | Department of Mathematics and Statistics, Missouri University of Science & Technology, Rolla, MO, USA |
2. | Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan |
We consider nonlinear Schrödinger equations with either power-type or Hartree nonlinearity in the presence of an external potential. We show that for long-range nonlinearities, solutions cannot exhibit scattering to solitary waves or more general localized waves. This extends the well-known results concerning non-existence of non-trivial scattering states for long-range nonlinearities.
References:
[1] |
J. E. Barab,
Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation, J. Math. Phys., 25 (1984), 3270-3273.
doi: 10.1063/1.526074. |
[2] |
J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, , Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York, 1976. x+207 pp. |
[3] |
V. Bisognin, M. Sepúlveda and O. Vera,
On the nonexistence of asymptotically free solutions for a coupled nonlinear Schrödinger system, Appl. Numer. Math., 59 (2009), 2285-2302.
doi: 10.1016/j.apnum.2008.12.017. |
[4] |
T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. xiv+323pp.
doi: 10.1090/cln/010. |
[5] |
Y. Cho and T. Ozawa,
On the semirelativistic Hartree-type equation, SIAM J. Math. Anal., 38 (2006), 1060-1074.
doi: 10.1137/060653688. |
[6] |
S. Cuccagna and M. Maeda, On stability of small solitons of the 1–D NLS with a trapping delta potential, SIAM J. Math. Anal., 51 (2019), 4311–4331, arXiv: 1904.11869.
doi: 10.1137/19M1258402. |
[7] |
R. T. Glassey,
On the asymptotic behavior of nonlinear wave equations, Trans. Amer. Math. Soc., 182 (1973), 187-200.
doi: 10.1090/S0002-9947-1973-0330782-7. |
[8] |
R. T. Glassey,
Asymptotic behavior of solutions to certain nonlinear Schrödinger-Hartree equations, Comm. Math. Phys., 53 (1977), 9-18.
doi: 10.1007/BF01609164. |
[9] |
J. Ginibre and G. Velo,
Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., 144 (1992), 163-188.
doi: 10.1007/BF02099195. |
[10] |
N. Hayashi, C. Li and P. Naumkin, Nonexistence of asymptotically free solutions to nonlinear Schrödinger systems, Electron. J. Differential Equations, 2012 (2012), 14 pp. |
[11] |
N. Hayashi, P. Naumkin and T. Niizato, Nonexistence of the usual scattering states for the generalized Ostrovsky-Hunter equation, J. Math. Phys., 55 (2014), 053502, 11pp.
doi: 10.1063/1.4874107. |
[12] |
M. Keel and T. Tao,
Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.
doi: 10.1353/ajm.1998.0039. |
[13] |
S. Masaki and H. Miyazaki,
Nonexistence of scattering and modified scattering states for some nonlinear Schrödinger equation with critical inhomogeneous nonlinearity, Differential Integral Equations, 32 (2019), 121-138.
|
[14] |
M. Reed and B. Simon, Methods of Modern Mathematical Physics. Ⅱ. Fourier Analysis, Self-adjointness, Academic Press, New York-London, 1975.
![]() ![]() |
[15] |
A. Shimomura,
Nonexistence of asymptotically free solutions for quadratic nonlinear Schrödinger equations in two space dimensions, Differential Integral Equations, 18 (2005), 325-335.
|
[16] |
A. Shimomura and Y. Tsutsumi,
Nonexistence of scattering states for some quadratic nonlinear Schrödinger equations in two space dimensions, Differential Integral Equations, 19 (2006), 1047-1060.
|
[17] |
W. A. Strauss, Nonlinear scattering theory, in Scattering Theory in Mathematical Physics, Reidel, Dordrecht, 9 (1974), 53–78.
doi: 10.1007/978-94-010-2147-0_3. |
[18] |
R. S. Strichartz,
Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke. Math. J., 44 (1977), 705-714.
doi: 10.1215/S0012-7094-77-04430-1. |
show all references
References:
[1] |
J. E. Barab,
Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation, J. Math. Phys., 25 (1984), 3270-3273.
doi: 10.1063/1.526074. |
[2] |
J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, , Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York, 1976. x+207 pp. |
[3] |
V. Bisognin, M. Sepúlveda and O. Vera,
On the nonexistence of asymptotically free solutions for a coupled nonlinear Schrödinger system, Appl. Numer. Math., 59 (2009), 2285-2302.
doi: 10.1016/j.apnum.2008.12.017. |
[4] |
T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. xiv+323pp.
doi: 10.1090/cln/010. |
[5] |
Y. Cho and T. Ozawa,
On the semirelativistic Hartree-type equation, SIAM J. Math. Anal., 38 (2006), 1060-1074.
doi: 10.1137/060653688. |
[6] |
S. Cuccagna and M. Maeda, On stability of small solitons of the 1–D NLS with a trapping delta potential, SIAM J. Math. Anal., 51 (2019), 4311–4331, arXiv: 1904.11869.
doi: 10.1137/19M1258402. |
[7] |
R. T. Glassey,
On the asymptotic behavior of nonlinear wave equations, Trans. Amer. Math. Soc., 182 (1973), 187-200.
doi: 10.1090/S0002-9947-1973-0330782-7. |
[8] |
R. T. Glassey,
Asymptotic behavior of solutions to certain nonlinear Schrödinger-Hartree equations, Comm. Math. Phys., 53 (1977), 9-18.
doi: 10.1007/BF01609164. |
[9] |
J. Ginibre and G. Velo,
Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., 144 (1992), 163-188.
doi: 10.1007/BF02099195. |
[10] |
N. Hayashi, C. Li and P. Naumkin, Nonexistence of asymptotically free solutions to nonlinear Schrödinger systems, Electron. J. Differential Equations, 2012 (2012), 14 pp. |
[11] |
N. Hayashi, P. Naumkin and T. Niizato, Nonexistence of the usual scattering states for the generalized Ostrovsky-Hunter equation, J. Math. Phys., 55 (2014), 053502, 11pp.
doi: 10.1063/1.4874107. |
[12] |
M. Keel and T. Tao,
Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.
doi: 10.1353/ajm.1998.0039. |
[13] |
S. Masaki and H. Miyazaki,
Nonexistence of scattering and modified scattering states for some nonlinear Schrödinger equation with critical inhomogeneous nonlinearity, Differential Integral Equations, 32 (2019), 121-138.
|
[14] |
M. Reed and B. Simon, Methods of Modern Mathematical Physics. Ⅱ. Fourier Analysis, Self-adjointness, Academic Press, New York-London, 1975.
![]() ![]() |
[15] |
A. Shimomura,
Nonexistence of asymptotically free solutions for quadratic nonlinear Schrödinger equations in two space dimensions, Differential Integral Equations, 18 (2005), 325-335.
|
[16] |
A. Shimomura and Y. Tsutsumi,
Nonexistence of scattering states for some quadratic nonlinear Schrödinger equations in two space dimensions, Differential Integral Equations, 19 (2006), 1047-1060.
|
[17] |
W. A. Strauss, Nonlinear scattering theory, in Scattering Theory in Mathematical Physics, Reidel, Dordrecht, 9 (1974), 53–78.
doi: 10.1007/978-94-010-2147-0_3. |
[18] |
R. S. Strichartz,
Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke. Math. J., 44 (1977), 705-714.
doi: 10.1215/S0012-7094-77-04430-1. |
[1] |
Ricardo Weder, Dimitri Yafaev. Inverse scattering at a fixed energy for long-range potentials. Inverse Problems and Imaging, 2007, 1 (1) : 217-224. doi: 10.3934/ipi.2007.1.217 |
[2] |
Juan Kalemkerian, Andrés Sosa. Long-range dependence in the volatility of returns in Uruguayan sovereign debt indices. Journal of Dynamics and Games, 2020, 7 (3) : 225-237. doi: 10.3934/jdg.2020016 |
[3] |
Guan Huang. An averaging theorem for nonlinear Schrödinger equations with small nonlinearities. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3555-3574. doi: 10.3934/dcds.2014.34.3555 |
[4] |
Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure and Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027 |
[5] |
Van Duong Dinh. A unified approach for energy scattering for focusing nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6441-6471. doi: 10.3934/dcds.2020286 |
[6] |
Xing Cheng, Ze Li, Lifeng Zhao. Scattering of solutions to the nonlinear Schrödinger equations with regular potentials. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 2999-3023. doi: 10.3934/dcds.2017129 |
[7] |
Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003 |
[8] |
Peter Bates, Chunlei Zhang. Traveling pulses for the Klein-Gordon equation on a lattice or continuum with long-range interaction. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 235-252. doi: 10.3934/dcds.2006.16.235 |
[9] |
Bartosz Bieganowski, Jaros law Mederski. Nonlinear SchrÖdinger equations with sum of periodic and vanishing potentials and sign-changing nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (1) : 143-161. doi: 10.3934/cpaa.2018009 |
[10] |
Tadahiro Oh, Mamoru Okamoto, Oana Pocovnicu. On the probabilistic well-posedness of the nonlinear Schrödinger equations with non-algebraic nonlinearities. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3479-3520. doi: 10.3934/dcds.2019144 |
[11] |
Juan Belmonte-Beitia, Víctor M. Pérez-García, Vadym Vekslerchik, Pedro J. Torres. Lie symmetries, qualitative analysis and exact solutions of nonlinear Schrödinger equations with inhomogeneous nonlinearities. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 221-233. doi: 10.3934/dcdsb.2008.9.221 |
[12] |
Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure and Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831 |
[13] |
Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563 |
[14] |
J. Colliander, Justin Holmer, Monica Visan, Xiaoyi Zhang. Global existence and scattering for rough solutions to generalized nonlinear Schrödinger equations on $R$. Communications on Pure and Applied Analysis, 2008, 7 (3) : 467-489. doi: 10.3934/cpaa.2008.7.467 |
[15] |
Van Duong Dinh, Sahbi Keraani. The Sobolev-Morawetz approach for the energy scattering of nonlinear Schrödinger-type equations with radial data. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2837-2876. doi: 10.3934/dcdss.2020407 |
[16] |
Jeremy L. Marzuola, Michael I. Weinstein. Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1505-1554. doi: 10.3934/dcds.2010.28.1505 |
[17] |
Alessio Pomponio, Simone Secchi. A note on coupled nonlinear Schrödinger systems under the effect of general nonlinearities. Communications on Pure and Applied Analysis, 2010, 9 (3) : 741-750. doi: 10.3934/cpaa.2010.9.741 |
[18] |
Van Duong Dinh, Binhua Feng. On fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4565-4612. doi: 10.3934/dcds.2019188 |
[19] |
Alp Eden, Elİf Kuz. Almost cubic nonlinear Schrödinger equation: Existence, uniqueness and scattering. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1803-1823. doi: 10.3934/cpaa.2009.8.1803 |
[20] |
João Marcos do Ó, Uberlandio Severo. Quasilinear Schrödinger equations involving concave and convex nonlinearities. Communications on Pure and Applied Analysis, 2009, 8 (2) : 621-644. doi: 10.3934/cpaa.2009.8.621 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]