- Previous Article
- DCDS Home
- This Issue
-
Next Article
Existence of nodal solutions for the sublinear Moore-Nehari differential equation
Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations
1. | Department of Mathematics and Statistics, Missouri University of Science & Technology, Rolla, MO, USA |
2. | Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan |
We consider nonlinear Schrödinger equations with either power-type or Hartree nonlinearity in the presence of an external potential. We show that for long-range nonlinearities, solutions cannot exhibit scattering to solitary waves or more general localized waves. This extends the well-known results concerning non-existence of non-trivial scattering states for long-range nonlinearities.
References:
[1] |
J. E. Barab,
Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation, J. Math. Phys., 25 (1984), 3270-3273.
doi: 10.1063/1.526074. |
[2] |
J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, , Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York, 1976. x+207 pp. |
[3] |
V. Bisognin, M. Sepúlveda and O. Vera,
On the nonexistence of asymptotically free solutions for a coupled nonlinear Schrödinger system, Appl. Numer. Math., 59 (2009), 2285-2302.
doi: 10.1016/j.apnum.2008.12.017. |
[4] |
T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. xiv+323pp.
doi: 10.1090/cln/010. |
[5] |
Y. Cho and T. Ozawa,
On the semirelativistic Hartree-type equation, SIAM J. Math. Anal., 38 (2006), 1060-1074.
doi: 10.1137/060653688. |
[6] |
S. Cuccagna and M. Maeda, On stability of small solitons of the 1–D NLS with a trapping delta potential, SIAM J. Math. Anal., 51 (2019), 4311–4331, arXiv: 1904.11869.
doi: 10.1137/19M1258402. |
[7] |
R. T. Glassey,
On the asymptotic behavior of nonlinear wave equations, Trans. Amer. Math. Soc., 182 (1973), 187-200.
doi: 10.1090/S0002-9947-1973-0330782-7. |
[8] |
R. T. Glassey,
Asymptotic behavior of solutions to certain nonlinear Schrödinger-Hartree equations, Comm. Math. Phys., 53 (1977), 9-18.
doi: 10.1007/BF01609164. |
[9] |
J. Ginibre and G. Velo,
Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., 144 (1992), 163-188.
doi: 10.1007/BF02099195. |
[10] |
N. Hayashi, C. Li and P. Naumkin, Nonexistence of asymptotically free solutions to nonlinear Schrödinger systems, Electron. J. Differential Equations, 2012 (2012), 14 pp. |
[11] |
N. Hayashi, P. Naumkin and T. Niizato, Nonexistence of the usual scattering states for the generalized Ostrovsky-Hunter equation, J. Math. Phys., 55 (2014), 053502, 11pp.
doi: 10.1063/1.4874107. |
[12] |
M. Keel and T. Tao,
Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.
doi: 10.1353/ajm.1998.0039. |
[13] |
S. Masaki and H. Miyazaki,
Nonexistence of scattering and modified scattering states for some nonlinear Schrödinger equation with critical inhomogeneous nonlinearity, Differential Integral Equations, 32 (2019), 121-138.
|
[14] |
M. Reed and B. Simon, Methods of Modern Mathematical Physics. Ⅱ. Fourier Analysis, Self-adjointness, Academic Press, New York-London, 1975.
![]() |
[15] |
A. Shimomura,
Nonexistence of asymptotically free solutions for quadratic nonlinear Schrödinger equations in two space dimensions, Differential Integral Equations, 18 (2005), 325-335.
|
[16] |
A. Shimomura and Y. Tsutsumi,
Nonexistence of scattering states for some quadratic nonlinear Schrödinger equations in two space dimensions, Differential Integral Equations, 19 (2006), 1047-1060.
|
[17] |
W. A. Strauss, Nonlinear scattering theory, in Scattering Theory in Mathematical Physics, Reidel, Dordrecht, 9 (1974), 53–78.
doi: 10.1007/978-94-010-2147-0_3. |
[18] |
R. S. Strichartz,
Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke. Math. J., 44 (1977), 705-714.
doi: 10.1215/S0012-7094-77-04430-1. |
show all references
References:
[1] |
J. E. Barab,
Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation, J. Math. Phys., 25 (1984), 3270-3273.
doi: 10.1063/1.526074. |
[2] |
J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, , Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York, 1976. x+207 pp. |
[3] |
V. Bisognin, M. Sepúlveda and O. Vera,
On the nonexistence of asymptotically free solutions for a coupled nonlinear Schrödinger system, Appl. Numer. Math., 59 (2009), 2285-2302.
doi: 10.1016/j.apnum.2008.12.017. |
[4] |
T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. xiv+323pp.
doi: 10.1090/cln/010. |
[5] |
Y. Cho and T. Ozawa,
On the semirelativistic Hartree-type equation, SIAM J. Math. Anal., 38 (2006), 1060-1074.
doi: 10.1137/060653688. |
[6] |
S. Cuccagna and M. Maeda, On stability of small solitons of the 1–D NLS with a trapping delta potential, SIAM J. Math. Anal., 51 (2019), 4311–4331, arXiv: 1904.11869.
doi: 10.1137/19M1258402. |
[7] |
R. T. Glassey,
On the asymptotic behavior of nonlinear wave equations, Trans. Amer. Math. Soc., 182 (1973), 187-200.
doi: 10.1090/S0002-9947-1973-0330782-7. |
[8] |
R. T. Glassey,
Asymptotic behavior of solutions to certain nonlinear Schrödinger-Hartree equations, Comm. Math. Phys., 53 (1977), 9-18.
doi: 10.1007/BF01609164. |
[9] |
J. Ginibre and G. Velo,
Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., 144 (1992), 163-188.
doi: 10.1007/BF02099195. |
[10] |
N. Hayashi, C. Li and P. Naumkin, Nonexistence of asymptotically free solutions to nonlinear Schrödinger systems, Electron. J. Differential Equations, 2012 (2012), 14 pp. |
[11] |
N. Hayashi, P. Naumkin and T. Niizato, Nonexistence of the usual scattering states for the generalized Ostrovsky-Hunter equation, J. Math. Phys., 55 (2014), 053502, 11pp.
doi: 10.1063/1.4874107. |
[12] |
M. Keel and T. Tao,
Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.
doi: 10.1353/ajm.1998.0039. |
[13] |
S. Masaki and H. Miyazaki,
Nonexistence of scattering and modified scattering states for some nonlinear Schrödinger equation with critical inhomogeneous nonlinearity, Differential Integral Equations, 32 (2019), 121-138.
|
[14] |
M. Reed and B. Simon, Methods of Modern Mathematical Physics. Ⅱ. Fourier Analysis, Self-adjointness, Academic Press, New York-London, 1975.
![]() |
[15] |
A. Shimomura,
Nonexistence of asymptotically free solutions for quadratic nonlinear Schrödinger equations in two space dimensions, Differential Integral Equations, 18 (2005), 325-335.
|
[16] |
A. Shimomura and Y. Tsutsumi,
Nonexistence of scattering states for some quadratic nonlinear Schrödinger equations in two space dimensions, Differential Integral Equations, 19 (2006), 1047-1060.
|
[17] |
W. A. Strauss, Nonlinear scattering theory, in Scattering Theory in Mathematical Physics, Reidel, Dordrecht, 9 (1974), 53–78.
doi: 10.1007/978-94-010-2147-0_3. |
[18] |
R. S. Strichartz,
Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke. Math. J., 44 (1977), 705-714.
doi: 10.1215/S0012-7094-77-04430-1. |
[1] |
Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323 |
[2] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[3] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[4] |
Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020456 |
[5] |
Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260 |
[6] |
Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021018 |
[7] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002 |
[8] |
Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294 |
[9] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298 |
[10] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[11] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[12] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020376 |
[13] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[14] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[15] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[16] |
Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020392 |
[17] |
Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125 |
[18] |
Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264 |
[19] |
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298 |
[20] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020461 |
2019 Impact Factor: 1.338
Tools
Article outline
[Back to Top]