doi: 10.3934/dcds.2020330

Jordan decomposition and the recurrent set of flows of automorphisms

1. 

Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile

2. 

Instituto de Matemática, Universidade Estadual de Campinas, Brazil

3. 

Laboratoire de Mathématiques Raphaël Salem, Université de Rouen, France

* Corresponding author: Víctor Ayala

Received  February 2020 Revised  August 2020 Published  September 2020

Fund Project: Supported by Proyecto Fondecyt n° 1190142. Conicyt, Chile.
Supported by Fapesp grant 2018/10696-6

In this paper we show that any linear vector field $ \mathcal{X} $ on a connected Lie group $ G $ admits a Jordan decomposition and the recurrent set of the associated flow of automorphisms is given as the intersection of the fixed points of the hyperbolic and nilpotent components of its Jordan decomposition.

Citation: Víctor Ayala, Adriano Da Silva, Philippe Jouan. Jordan decomposition and the recurrent set of flows of automorphisms. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020330
References:
[1]

V. I. Arnold and A. Avez, Ergodic Problems in Classical Mechanics, , New York: Benjamin, 1968.  Google Scholar

[2]

V. Ayala and A. Da Silva, Controllability of linear control systems on Lie groups with semisimple finite center, SIAM Journal on Control and Optimization, 55 (2017), 1332-1343.  doi: 10.1137/15M1053037.  Google Scholar

[3]

V. Ayala and A. Da Silva, On the characterization of the controllability property for linear control systems on nonnilpotent, solvable threedimensional Lie groups, Journal of Differential Equations, 266 (2019), 8233-8257.  doi: 10.1016/j.jde.2018.12.027.  Google Scholar

[4]

V. AyalaA. Da Silva and G. Zsigmond, Control sets of linear systems on Lie groups, Nonlinear Differential Equations and Applications - NoDEA, 24 (2017), 1-15.  doi: 10.1007/s00030-017-0430-5.  Google Scholar

[5]

V. AyalaA. Da SilvaP. Jouan and G. Zsigmond, Control sets of linear systems on semi-simple Lie groups, J. Differ. Equ., 269 (2020), 449-466.  doi: 10.1016/j.jde.2019.12.010.  Google Scholar

[6]

V. Ayala and P. Jouan, Almost-riemannian geometry on lie groups, SIAM Journal on Control and Optimization, 54 (2016), 2919-2947.  doi: 10.1137/15M1038372.  Google Scholar

[7]

V. Ayala and J. Tirao, Linear control systems on lie groups and controllability, American Mathematical Society, Series: Symposia in Pure Mathematics, 64 (1999), 47-64.  doi: 10.1090/pspum/064/1654529.  Google Scholar

[8]

A. Da Silva, Controllability of linear systems on solvable Lie groups, SIAM Journal on Control and Optimization, 54 (2016), 372-390.  doi: 10.1137/140998342.  Google Scholar

[9]

T. FerraiolM. Patrão and L. Seco, Jordan decomposition and dynamics on flag manifolds, Discrete and Continuous Dynamical Systems - Series A, 26 (2010), 923-947.  doi: 10.3934/dcds.2010.26.923.  Google Scholar

[10]

P. Jouan, Equivalence of control systems with linear systems on lie groups and homogeneous spaces, ESAIM: Control Optimization and Calculus of Variations, 16 (2010), 956-973.  doi: 10.1051/cocv/2009027.  Google Scholar

[11]

V. Kivioja and E. Le Donne, Isometries of nilpotent metric groups, J. École Polytechnique, Mathématiques, Tome 4 (2017), 473–482. doi: 10.5802/jep.48.  Google Scholar

[12]

A. W. Knapp, Lie Groups Beyond an Introduction, Second Edition, Birkhäuser Boston, Inc., Boston, MA, 2002.  Google Scholar

[13]

J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math., 21 (1976), 293-329.  doi: 10.1016/S0001-8708(76)80002-3.  Google Scholar

[14]

G. D. Mostow, Fully reducible subgroups of algebraic groups, American Journal of Mathematics, 78 (1956), 200-221.  doi: 10.2307/2372490.  Google Scholar

[15]

E. Noether, Invariant variation problems, Transp. Theory Statist. Phys., 1 (1971), 186-207.  doi: 10.1080/00411457108231446.  Google Scholar

[16]

M. Patrão, Entropy and its variational principle for non-compact metric spaces, Ergod. Th. & Dynam. Sys., 30 (2010), 1529-1542.  doi: 10.1017/S0143385709000674.  Google Scholar

[17]

M. Patrão, The topological entropy of endomorphisms of Lie groups, Israel Journal of Mathematics, 234 (2019), 55-80.  doi: 10.1007/s11856-019-1910-6.  Google Scholar

[18]

A. L. Onishchik and E. B. Vinberg, Lie Groups and Lie Algebras Ⅲ - Structure of Lie Groups and Lie Algebras, , Berlin: Springer, 1990. doi: 10.1007/978-3-642-74334-4.  Google Scholar

[19]

L. A. B. San Martin, Algebras de Lie, Second Edition, Editora Unicamp, 2010. Google Scholar

show all references

References:
[1]

V. I. Arnold and A. Avez, Ergodic Problems in Classical Mechanics, , New York: Benjamin, 1968.  Google Scholar

[2]

V. Ayala and A. Da Silva, Controllability of linear control systems on Lie groups with semisimple finite center, SIAM Journal on Control and Optimization, 55 (2017), 1332-1343.  doi: 10.1137/15M1053037.  Google Scholar

[3]

V. Ayala and A. Da Silva, On the characterization of the controllability property for linear control systems on nonnilpotent, solvable threedimensional Lie groups, Journal of Differential Equations, 266 (2019), 8233-8257.  doi: 10.1016/j.jde.2018.12.027.  Google Scholar

[4]

V. AyalaA. Da Silva and G. Zsigmond, Control sets of linear systems on Lie groups, Nonlinear Differential Equations and Applications - NoDEA, 24 (2017), 1-15.  doi: 10.1007/s00030-017-0430-5.  Google Scholar

[5]

V. AyalaA. Da SilvaP. Jouan and G. Zsigmond, Control sets of linear systems on semi-simple Lie groups, J. Differ. Equ., 269 (2020), 449-466.  doi: 10.1016/j.jde.2019.12.010.  Google Scholar

[6]

V. Ayala and P. Jouan, Almost-riemannian geometry on lie groups, SIAM Journal on Control and Optimization, 54 (2016), 2919-2947.  doi: 10.1137/15M1038372.  Google Scholar

[7]

V. Ayala and J. Tirao, Linear control systems on lie groups and controllability, American Mathematical Society, Series: Symposia in Pure Mathematics, 64 (1999), 47-64.  doi: 10.1090/pspum/064/1654529.  Google Scholar

[8]

A. Da Silva, Controllability of linear systems on solvable Lie groups, SIAM Journal on Control and Optimization, 54 (2016), 372-390.  doi: 10.1137/140998342.  Google Scholar

[9]

T. FerraiolM. Patrão and L. Seco, Jordan decomposition and dynamics on flag manifolds, Discrete and Continuous Dynamical Systems - Series A, 26 (2010), 923-947.  doi: 10.3934/dcds.2010.26.923.  Google Scholar

[10]

P. Jouan, Equivalence of control systems with linear systems on lie groups and homogeneous spaces, ESAIM: Control Optimization and Calculus of Variations, 16 (2010), 956-973.  doi: 10.1051/cocv/2009027.  Google Scholar

[11]

V. Kivioja and E. Le Donne, Isometries of nilpotent metric groups, J. École Polytechnique, Mathématiques, Tome 4 (2017), 473–482. doi: 10.5802/jep.48.  Google Scholar

[12]

A. W. Knapp, Lie Groups Beyond an Introduction, Second Edition, Birkhäuser Boston, Inc., Boston, MA, 2002.  Google Scholar

[13]

J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math., 21 (1976), 293-329.  doi: 10.1016/S0001-8708(76)80002-3.  Google Scholar

[14]

G. D. Mostow, Fully reducible subgroups of algebraic groups, American Journal of Mathematics, 78 (1956), 200-221.  doi: 10.2307/2372490.  Google Scholar

[15]

E. Noether, Invariant variation problems, Transp. Theory Statist. Phys., 1 (1971), 186-207.  doi: 10.1080/00411457108231446.  Google Scholar

[16]

M. Patrão, Entropy and its variational principle for non-compact metric spaces, Ergod. Th. & Dynam. Sys., 30 (2010), 1529-1542.  doi: 10.1017/S0143385709000674.  Google Scholar

[17]

M. Patrão, The topological entropy of endomorphisms of Lie groups, Israel Journal of Mathematics, 234 (2019), 55-80.  doi: 10.1007/s11856-019-1910-6.  Google Scholar

[18]

A. L. Onishchik and E. B. Vinberg, Lie Groups and Lie Algebras Ⅲ - Structure of Lie Groups and Lie Algebras, , Berlin: Springer, 1990. doi: 10.1007/978-3-642-74334-4.  Google Scholar

[19]

L. A. B. San Martin, Algebras de Lie, Second Edition, Editora Unicamp, 2010. Google Scholar

[1]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[2]

Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045

[3]

Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, , () : -. doi: 10.3934/era.2021001

[4]

Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139

[5]

Yujuan Li, Huaifu Wang, Peipei Zhou, Guoshuang Zhang. Some properties of the cycle decomposition of WG-NLFSR. Advances in Mathematics of Communications, 2021, 15 (1) : 155-165. doi: 10.3934/amc.2020050

[6]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[7]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[8]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[9]

Wen Li, Wei-Hui Liu, Seak Weng Vong. Perron vector analysis for irreducible nonnegative tensors and its applications. Journal of Industrial & Management Optimization, 2021, 17 (1) : 29-50. doi: 10.3934/jimo.2019097

[10]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[11]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

[12]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[13]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435

[14]

Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020129

[15]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044

[16]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[17]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[18]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[19]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[20]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (43)
  • HTML views (161)
  • Cited by (0)

Other articles
by authors

[Back to Top]