In this paper, we establish the gradient and second derivative estimates for solutions to two kinds of parabolic Monge-Ampère equations in half-space under certain boundary data and growth condition. We also use such estimates to obtain the Liouville theorems for these two kinds of parabolic Monge-Ampère equations and one kind of elliptic Monge-Ampère equation.
Citation: |
[1] |
J. Bao, H. Li and L. Zhang, Monge-Ampère equation on exterior domains, Calc. Var. Partial Differential Equations, 52 (2015), 39-63.
doi: 10.1007/s00526-013-0704-7.![]() ![]() ![]() |
[2] |
L. Caffarelli, Topics in PDEs: The Monge-Ampère Equation, Graduate course, Courant Institute, New York University, 1995.
![]() |
[3] |
L. Caffarelli and Y. Y. Li, An extension to a theorem of Jörgens, Calabi, and Pogorelov, Commun. Pure Appl. Math., 56 (2003), 549-583.
doi: 10.1002/cpa.10067.![]() ![]() ![]() |
[4] |
E. Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K.Jörgens, Mich. Math. J., 5 (1958), 105-126.
doi: 10.1307/mmj/1028998055.![]() ![]() ![]() |
[5] |
S. Y. Cheng and S. T. Yau, Complete affine hypersurfaces Ⅰ. The completeness of affine metrics, Commun. Pure Appl. Math., 39 (1986), 839-866.
doi: 10.1002/cpa.3160390606.![]() ![]() ![]() |
[6] |
C. E. Gutiérrez and Q. Huang, Geometric properties of the sections of solutions to the Monge-Ampère equation, Trans. Amer. Math. Soc., 352 (2000), 4381-4396.
doi: 10.1090/S0002-9947-00-02491-0.![]() ![]() ![]() |
[7] |
C. E. Gutiérrez and Q. Huang, A generalization of a theorem by Calabi to the parabolic Monge-Ampère equation, Indiana Univ. Math. J., 47 (1998), 1459-1480.
doi: 10.1512/iumj.1998.47.1563.![]() ![]() ![]() |
[8] |
X. Jia, D. Li and Z. Li, Asymptotic behavior at infinity of solutions of Monge-Ampère equations in half spaces, J. Differential Equations, 269 (2020), 326–348, arXiv: 1808.02643.
doi: 10.1016/j.jde.2019.12.007.![]() ![]() ![]() |
[9] |
K. Jörgens, Über die Lösungen der Differentialgleichung $rt-s^2 = 1$, Math. Ann., 127 (1954), 130-134.
doi: 10.1007/BF01361114.![]() ![]() ![]() |
[10] |
J. Jost and Y. L. Xin, Some aspects of the global geometry of entire space-like submanifolds, Dedicated to Shiing-Shen Chern on His 90th Birthday, Results Math., 40 (2001), 233-245.
doi: 10.1007/BF03322708.![]() ![]() ![]() |
[11] |
N. V. Krylov, Sequences of convex functions and estimates of the maximum of the solution of a parabolic equation, (Russian) Sibirsk. Mat. Ž., 17 (1976), 290–303.
![]() ![]() |
[12] |
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific. 1996.
doi: 10.1142/3302.![]() ![]() ![]() |
[13] |
A. V. Pogorelov, On the improper affine hyperspheres, Geom. Dedic., 1 (1972), 33-46.
doi: 10.1007/BF00147379.![]() ![]() ![]() |
[14] |
O. Savin, Pointwise $C^{2, \alpha}$ estimates at the boundary for the Monge-Ampère equation, J. Amer. Math. Soc., 26 (2013), 63-99.
doi: 10.1090/S0894-0347-2012-00747-4.![]() ![]() ![]() |
[15] |
O. Savin, A localization theorem and boundary regularity for a class of degenerate Monge-Ampère equations, J. Differential Equations, 256 (2014), 327-388.
doi: 10.1016/j.jde.2013.08.019.![]() ![]() ![]() |
[16] |
K. Tso, Deforming a hypersurface by its Gauss-Kronecker curvature, Comm.pure Appl.math, 38 (1985), 867-882.
doi: 10.1002/cpa.3160380615.![]() ![]() ![]() |
[17] |
B. Wang and J. Bao, Asymptotic behavior on a kind of parabolic Monge-Ampère equation, J. Differential Equations, 259 (2015), 344-370.
doi: 10.1016/j.jde.2015.02.029.![]() ![]() ![]() |
[18] |
R. Wang and G. Wang, On existence, uniqueness and regularity of viscosity solutions for the first initial boundary value problems to parabolic Monge-Ampère equation, Northeast. Math. J., 8 (1992), 417-446.
![]() ![]() |
[19] |
R. Wang and G. Wang, The geometric measure theoretical characterization of viscosity solutions to parabolic Monge-Ampère type equation, J. Partial Diff. Eqs., 6 (1993), 237-254.
![]() ![]() |
[20] |
R. Wang and G. Wang, On another kind of parabolic Monge-Ampère equation: The existence, uniqueness and regularity of the viscosity solution, Northeastern Mathematical Journal, 10 (1994), 434-454.
![]() ![]() |
[21] |
J. Xiong and J. Bao, On Jögens, Calabi, and Pogorelov type theorem and isolated singularities of parabolic Monge-Ampère equations, J. Differ. Equ., 250 (2011), 367-385.
doi: 10.1016/j.jde.2010.08.024.![]() ![]() ![]() |
[22] |
W. Zhang, J. Bao and B. Wang, An extension of Jörgens-Calabi-Pogorelov theorem to parabolic Monge-Ampère equation, Calc. Var. Partial Differential Equations, 57 (2018), Paper No. 90, 36 pp.
doi: 10.1007/s00526-018-1363-5.![]() ![]() ![]() |