doi: 10.3934/dcds.2020331

A Liouville theorem of parabolic Monge-AmpÈre equations in half-space

1. 

School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China

2. 

School of Mathematics and Statistics, Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, China

* Corresponding author: Bo Wang

Received  February 2020 Revised  June 2020 Published  September 2020

Fund Project: The first and second author are partially supported by NSFC 11871102 and 11631002. The third author is partially supported by NSFC 11701027 and Beijing Institute of Technology Research Fund Program for Young Scholars

In this paper, we establish the gradient and second derivative estimates for solutions to two kinds of parabolic Monge-Ampère equations in half-space under certain boundary data and growth condition. We also use such estimates to obtain the Liouville theorems for these two kinds of parabolic Monge-Ampère equations and one kind of elliptic Monge-Ampère equation.

Citation: Ziwei Zhou, Jiguang Bao, Bo Wang. A Liouville theorem of parabolic Monge-AmpÈre equations in half-space. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020331
References:
[1]

J. BaoH. Li and L. Zhang, Monge-Ampère equation on exterior domains, Calc. Var. Partial Differential Equations, 52 (2015), 39-63.  doi: 10.1007/s00526-013-0704-7.  Google Scholar

[2]

L. Caffarelli, Topics in PDEs: The Monge-Ampère Equation, Graduate course, Courant Institute, New York University, 1995. Google Scholar

[3]

L. Caffarelli and Y. Y. Li, An extension to a theorem of Jörgens, Calabi, and Pogorelov, Commun. Pure Appl. Math., 56 (2003), 549-583.  doi: 10.1002/cpa.10067.  Google Scholar

[4]

E. Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K.Jörgens, Mich. Math. J., 5 (1958), 105-126.  doi: 10.1307/mmj/1028998055.  Google Scholar

[5]

S. Y. Cheng and S. T. Yau, Complete affine hypersurfaces Ⅰ. The completeness of affine metrics, Commun. Pure Appl. Math., 39 (1986), 839-866.  doi: 10.1002/cpa.3160390606.  Google Scholar

[6]

C. E. Gutiérrez and Q. Huang, Geometric properties of the sections of solutions to the Monge-Ampère equation, Trans. Amer. Math. Soc., 352 (2000), 4381-4396.  doi: 10.1090/S0002-9947-00-02491-0.  Google Scholar

[7]

C. E. Gutiérrez and Q. Huang, A generalization of a theorem by Calabi to the parabolic Monge-Ampère equation, Indiana Univ. Math. J., 47 (1998), 1459-1480.  doi: 10.1512/iumj.1998.47.1563.  Google Scholar

[8]

X. Jia, D. Li and Z. Li, Asymptotic behavior at infinity of solutions of Monge-Ampère equations in half spaces, J. Differential Equations, 269 (2020), 326–348, arXiv: 1808.02643. doi: 10.1016/j.jde.2019.12.007.  Google Scholar

[9]

K. Jörgens, Über die Lösungen der Differentialgleichung $rt-s^2 = 1$, Math. Ann., 127 (1954), 130-134.  doi: 10.1007/BF01361114.  Google Scholar

[10]

J. Jost and Y. L. Xin, Some aspects of the global geometry of entire space-like submanifolds, Dedicated to Shiing-Shen Chern on His 90th Birthday, Results Math., 40 (2001), 233-245.  doi: 10.1007/BF03322708.  Google Scholar

[11]

N. V. Krylov, Sequences of convex functions and estimates of the maximum of the solution of a parabolic equation, (Russian) Sibirsk. Mat. Ž., 17 (1976), 290–303.  Google Scholar

[12]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific. 1996. doi: 10.1142/3302.  Google Scholar

[13]

A. V. Pogorelov, On the improper affine hyperspheres, Geom. Dedic., 1 (1972), 33-46.  doi: 10.1007/BF00147379.  Google Scholar

[14]

O. Savin, Pointwise $C^{2, \alpha}$ estimates at the boundary for the Monge-Ampère equation, J. Amer. Math. Soc., 26 (2013), 63-99.  doi: 10.1090/S0894-0347-2012-00747-4.  Google Scholar

[15]

O. Savin, A localization theorem and boundary regularity for a class of degenerate Monge-Ampère equations, J. Differential Equations, 256 (2014), 327-388.  doi: 10.1016/j.jde.2013.08.019.  Google Scholar

[16]

K. Tso, Deforming a hypersurface by its Gauss-Kronecker curvature, Comm.pure Appl.math, 38 (1985), 867-882.  doi: 10.1002/cpa.3160380615.  Google Scholar

[17]

B. Wang and J. Bao, Asymptotic behavior on a kind of parabolic Monge-Ampère equation, J. Differential Equations, 259 (2015), 344-370.  doi: 10.1016/j.jde.2015.02.029.  Google Scholar

[18]

R. Wang and G. Wang, On existence, uniqueness and regularity of viscosity solutions for the first initial boundary value problems to parabolic Monge-Ampère equation, Northeast. Math. J., 8 (1992), 417-446.   Google Scholar

[19]

R. Wang and G. Wang, The geometric measure theoretical characterization of viscosity solutions to parabolic Monge-Ampère type equation, J. Partial Diff. Eqs., 6 (1993), 237-254.   Google Scholar

[20]

R. Wang and G. Wang, On another kind of parabolic Monge-Ampère equation: The existence, uniqueness and regularity of the viscosity solution, Northeastern Mathematical Journal, 10 (1994), 434-454.   Google Scholar

[21]

J. Xiong and J. Bao, On Jögens, Calabi, and Pogorelov type theorem and isolated singularities of parabolic Monge-Ampère equations, J. Differ. Equ., 250 (2011), 367-385.  doi: 10.1016/j.jde.2010.08.024.  Google Scholar

[22]

W. Zhang, J. Bao and B. Wang, An extension of Jörgens-Calabi-Pogorelov theorem to parabolic Monge-Ampère equation, Calc. Var. Partial Differential Equations, 57 (2018), Paper No. 90, 36 pp. doi: 10.1007/s00526-018-1363-5.  Google Scholar

show all references

References:
[1]

J. BaoH. Li and L. Zhang, Monge-Ampère equation on exterior domains, Calc. Var. Partial Differential Equations, 52 (2015), 39-63.  doi: 10.1007/s00526-013-0704-7.  Google Scholar

[2]

L. Caffarelli, Topics in PDEs: The Monge-Ampère Equation, Graduate course, Courant Institute, New York University, 1995. Google Scholar

[3]

L. Caffarelli and Y. Y. Li, An extension to a theorem of Jörgens, Calabi, and Pogorelov, Commun. Pure Appl. Math., 56 (2003), 549-583.  doi: 10.1002/cpa.10067.  Google Scholar

[4]

E. Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K.Jörgens, Mich. Math. J., 5 (1958), 105-126.  doi: 10.1307/mmj/1028998055.  Google Scholar

[5]

S. Y. Cheng and S. T. Yau, Complete affine hypersurfaces Ⅰ. The completeness of affine metrics, Commun. Pure Appl. Math., 39 (1986), 839-866.  doi: 10.1002/cpa.3160390606.  Google Scholar

[6]

C. E. Gutiérrez and Q. Huang, Geometric properties of the sections of solutions to the Monge-Ampère equation, Trans. Amer. Math. Soc., 352 (2000), 4381-4396.  doi: 10.1090/S0002-9947-00-02491-0.  Google Scholar

[7]

C. E. Gutiérrez and Q. Huang, A generalization of a theorem by Calabi to the parabolic Monge-Ampère equation, Indiana Univ. Math. J., 47 (1998), 1459-1480.  doi: 10.1512/iumj.1998.47.1563.  Google Scholar

[8]

X. Jia, D. Li and Z. Li, Asymptotic behavior at infinity of solutions of Monge-Ampère equations in half spaces, J. Differential Equations, 269 (2020), 326–348, arXiv: 1808.02643. doi: 10.1016/j.jde.2019.12.007.  Google Scholar

[9]

K. Jörgens, Über die Lösungen der Differentialgleichung $rt-s^2 = 1$, Math. Ann., 127 (1954), 130-134.  doi: 10.1007/BF01361114.  Google Scholar

[10]

J. Jost and Y. L. Xin, Some aspects of the global geometry of entire space-like submanifolds, Dedicated to Shiing-Shen Chern on His 90th Birthday, Results Math., 40 (2001), 233-245.  doi: 10.1007/BF03322708.  Google Scholar

[11]

N. V. Krylov, Sequences of convex functions and estimates of the maximum of the solution of a parabolic equation, (Russian) Sibirsk. Mat. Ž., 17 (1976), 290–303.  Google Scholar

[12]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific. 1996. doi: 10.1142/3302.  Google Scholar

[13]

A. V. Pogorelov, On the improper affine hyperspheres, Geom. Dedic., 1 (1972), 33-46.  doi: 10.1007/BF00147379.  Google Scholar

[14]

O. Savin, Pointwise $C^{2, \alpha}$ estimates at the boundary for the Monge-Ampère equation, J. Amer. Math. Soc., 26 (2013), 63-99.  doi: 10.1090/S0894-0347-2012-00747-4.  Google Scholar

[15]

O. Savin, A localization theorem and boundary regularity for a class of degenerate Monge-Ampère equations, J. Differential Equations, 256 (2014), 327-388.  doi: 10.1016/j.jde.2013.08.019.  Google Scholar

[16]

K. Tso, Deforming a hypersurface by its Gauss-Kronecker curvature, Comm.pure Appl.math, 38 (1985), 867-882.  doi: 10.1002/cpa.3160380615.  Google Scholar

[17]

B. Wang and J. Bao, Asymptotic behavior on a kind of parabolic Monge-Ampère equation, J. Differential Equations, 259 (2015), 344-370.  doi: 10.1016/j.jde.2015.02.029.  Google Scholar

[18]

R. Wang and G. Wang, On existence, uniqueness and regularity of viscosity solutions for the first initial boundary value problems to parabolic Monge-Ampère equation, Northeast. Math. J., 8 (1992), 417-446.   Google Scholar

[19]

R. Wang and G. Wang, The geometric measure theoretical characterization of viscosity solutions to parabolic Monge-Ampère type equation, J. Partial Diff. Eqs., 6 (1993), 237-254.   Google Scholar

[20]

R. Wang and G. Wang, On another kind of parabolic Monge-Ampère equation: The existence, uniqueness and regularity of the viscosity solution, Northeastern Mathematical Journal, 10 (1994), 434-454.   Google Scholar

[21]

J. Xiong and J. Bao, On Jögens, Calabi, and Pogorelov type theorem and isolated singularities of parabolic Monge-Ampère equations, J. Differ. Equ., 250 (2011), 367-385.  doi: 10.1016/j.jde.2010.08.024.  Google Scholar

[22]

W. Zhang, J. Bao and B. Wang, An extension of Jörgens-Calabi-Pogorelov theorem to parabolic Monge-Ampère equation, Calc. Var. Partial Differential Equations, 57 (2018), Paper No. 90, 36 pp. doi: 10.1007/s00526-018-1363-5.  Google Scholar

[1]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297

[2]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[3]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[4]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278

[5]

Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230

[6]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[7]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[8]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282

[9]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[10]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[11]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[12]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[13]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[14]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[15]

Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106

[16]

Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048

[17]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[18]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[19]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[20]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

2019 Impact Factor: 1.338

Article outline

[Back to Top]