-
Previous Article
Martin boundary of brownian motion on Gromov hyperbolic metric graphs
- DCDS Home
- This Issue
-
Next Article
Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source
A Liouville theorem of parabolic Monge-AmpÈre equations in half-space
1. | School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China |
2. | School of Mathematics and Statistics, Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, China |
In this paper, we establish the gradient and second derivative estimates for solutions to two kinds of parabolic Monge-Ampère equations in half-space under certain boundary data and growth condition. We also use such estimates to obtain the Liouville theorems for these two kinds of parabolic Monge-Ampère equations and one kind of elliptic Monge-Ampère equation.
References:
[1] |
J. Bao, H. Li and L. Zhang,
Monge-Ampère equation on exterior domains, Calc. Var. Partial Differential Equations, 52 (2015), 39-63.
doi: 10.1007/s00526-013-0704-7. |
[2] |
L. Caffarelli, Topics in PDEs: The Monge-Ampère Equation, Graduate course, Courant Institute, New York University, 1995. Google Scholar |
[3] |
L. Caffarelli and Y. Y. Li,
An extension to a theorem of Jörgens, Calabi, and Pogorelov, Commun. Pure Appl. Math., 56 (2003), 549-583.
doi: 10.1002/cpa.10067. |
[4] |
E. Calabi,
Improper affine hyperspheres of convex type and a generalization of a theorem by K.Jörgens, Mich. Math. J., 5 (1958), 105-126.
doi: 10.1307/mmj/1028998055. |
[5] |
S. Y. Cheng and S. T. Yau,
Complete affine hypersurfaces Ⅰ. The completeness of affine metrics, Commun. Pure Appl. Math., 39 (1986), 839-866.
doi: 10.1002/cpa.3160390606. |
[6] |
C. E. Gutiérrez and Q. Huang,
Geometric properties of the sections of solutions to the Monge-Ampère equation, Trans. Amer. Math. Soc., 352 (2000), 4381-4396.
doi: 10.1090/S0002-9947-00-02491-0. |
[7] |
C. E. Gutiérrez and Q. Huang,
A generalization of a theorem by Calabi to the parabolic Monge-Ampère equation, Indiana Univ. Math. J., 47 (1998), 1459-1480.
doi: 10.1512/iumj.1998.47.1563. |
[8] |
X. Jia, D. Li and Z. Li, Asymptotic behavior at infinity of solutions of Monge-Ampère equations in half spaces, J. Differential Equations, 269 (2020), 326–348, arXiv: 1808.02643.
doi: 10.1016/j.jde.2019.12.007. |
[9] |
K. Jörgens,
Über die Lösungen der Differentialgleichung $rt-s^2 = 1$, Math. Ann., 127 (1954), 130-134.
doi: 10.1007/BF01361114. |
[10] |
J. Jost and Y. L. Xin,
Some aspects of the global geometry of entire space-like submanifolds, Dedicated to Shiing-Shen Chern on His 90th Birthday, Results Math., 40 (2001), 233-245.
doi: 10.1007/BF03322708. |
[11] |
N. V. Krylov, Sequences of convex functions and estimates of the maximum of the solution of a parabolic equation, (Russian) Sibirsk. Mat. Ž., 17 (1976), 290–303. |
[12] |
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific. 1996.
doi: 10.1142/3302. |
[13] |
A. V. Pogorelov,
On the improper affine hyperspheres, Geom. Dedic., 1 (1972), 33-46.
doi: 10.1007/BF00147379. |
[14] |
O. Savin,
Pointwise $C^{2, \alpha}$ estimates at the boundary for the Monge-Ampère equation, J. Amer. Math. Soc., 26 (2013), 63-99.
doi: 10.1090/S0894-0347-2012-00747-4. |
[15] |
O. Savin,
A localization theorem and boundary regularity for a class of degenerate Monge-Ampère equations, J. Differential Equations, 256 (2014), 327-388.
doi: 10.1016/j.jde.2013.08.019. |
[16] |
K. Tso,
Deforming a hypersurface by its Gauss-Kronecker curvature, Comm.pure Appl.math, 38 (1985), 867-882.
doi: 10.1002/cpa.3160380615. |
[17] |
B. Wang and J. Bao,
Asymptotic behavior on a kind of parabolic Monge-Ampère equation, J. Differential Equations, 259 (2015), 344-370.
doi: 10.1016/j.jde.2015.02.029. |
[18] |
R. Wang and G. Wang,
On existence, uniqueness and regularity of viscosity solutions for the first initial boundary value problems to parabolic Monge-Ampère equation, Northeast. Math. J., 8 (1992), 417-446.
|
[19] |
R. Wang and G. Wang,
The geometric measure theoretical characterization of viscosity solutions to parabolic Monge-Ampère type equation, J. Partial Diff. Eqs., 6 (1993), 237-254.
|
[20] |
R. Wang and G. Wang,
On another kind of parabolic Monge-Ampère equation: The existence, uniqueness and regularity of the viscosity solution, Northeastern Mathematical Journal, 10 (1994), 434-454.
|
[21] |
J. Xiong and J. Bao,
On Jögens, Calabi, and Pogorelov type theorem and isolated singularities of parabolic Monge-Ampère equations, J. Differ. Equ., 250 (2011), 367-385.
doi: 10.1016/j.jde.2010.08.024. |
[22] |
W. Zhang, J. Bao and B. Wang, An extension of Jörgens-Calabi-Pogorelov theorem to parabolic Monge-Ampère equation, Calc. Var. Partial Differential Equations, 57 (2018), Paper No. 90, 36 pp.
doi: 10.1007/s00526-018-1363-5. |
show all references
References:
[1] |
J. Bao, H. Li and L. Zhang,
Monge-Ampère equation on exterior domains, Calc. Var. Partial Differential Equations, 52 (2015), 39-63.
doi: 10.1007/s00526-013-0704-7. |
[2] |
L. Caffarelli, Topics in PDEs: The Monge-Ampère Equation, Graduate course, Courant Institute, New York University, 1995. Google Scholar |
[3] |
L. Caffarelli and Y. Y. Li,
An extension to a theorem of Jörgens, Calabi, and Pogorelov, Commun. Pure Appl. Math., 56 (2003), 549-583.
doi: 10.1002/cpa.10067. |
[4] |
E. Calabi,
Improper affine hyperspheres of convex type and a generalization of a theorem by K.Jörgens, Mich. Math. J., 5 (1958), 105-126.
doi: 10.1307/mmj/1028998055. |
[5] |
S. Y. Cheng and S. T. Yau,
Complete affine hypersurfaces Ⅰ. The completeness of affine metrics, Commun. Pure Appl. Math., 39 (1986), 839-866.
doi: 10.1002/cpa.3160390606. |
[6] |
C. E. Gutiérrez and Q. Huang,
Geometric properties of the sections of solutions to the Monge-Ampère equation, Trans. Amer. Math. Soc., 352 (2000), 4381-4396.
doi: 10.1090/S0002-9947-00-02491-0. |
[7] |
C. E. Gutiérrez and Q. Huang,
A generalization of a theorem by Calabi to the parabolic Monge-Ampère equation, Indiana Univ. Math. J., 47 (1998), 1459-1480.
doi: 10.1512/iumj.1998.47.1563. |
[8] |
X. Jia, D. Li and Z. Li, Asymptotic behavior at infinity of solutions of Monge-Ampère equations in half spaces, J. Differential Equations, 269 (2020), 326–348, arXiv: 1808.02643.
doi: 10.1016/j.jde.2019.12.007. |
[9] |
K. Jörgens,
Über die Lösungen der Differentialgleichung $rt-s^2 = 1$, Math. Ann., 127 (1954), 130-134.
doi: 10.1007/BF01361114. |
[10] |
J. Jost and Y. L. Xin,
Some aspects of the global geometry of entire space-like submanifolds, Dedicated to Shiing-Shen Chern on His 90th Birthday, Results Math., 40 (2001), 233-245.
doi: 10.1007/BF03322708. |
[11] |
N. V. Krylov, Sequences of convex functions and estimates of the maximum of the solution of a parabolic equation, (Russian) Sibirsk. Mat. Ž., 17 (1976), 290–303. |
[12] |
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific. 1996.
doi: 10.1142/3302. |
[13] |
A. V. Pogorelov,
On the improper affine hyperspheres, Geom. Dedic., 1 (1972), 33-46.
doi: 10.1007/BF00147379. |
[14] |
O. Savin,
Pointwise $C^{2, \alpha}$ estimates at the boundary for the Monge-Ampère equation, J. Amer. Math. Soc., 26 (2013), 63-99.
doi: 10.1090/S0894-0347-2012-00747-4. |
[15] |
O. Savin,
A localization theorem and boundary regularity for a class of degenerate Monge-Ampère equations, J. Differential Equations, 256 (2014), 327-388.
doi: 10.1016/j.jde.2013.08.019. |
[16] |
K. Tso,
Deforming a hypersurface by its Gauss-Kronecker curvature, Comm.pure Appl.math, 38 (1985), 867-882.
doi: 10.1002/cpa.3160380615. |
[17] |
B. Wang and J. Bao,
Asymptotic behavior on a kind of parabolic Monge-Ampère equation, J. Differential Equations, 259 (2015), 344-370.
doi: 10.1016/j.jde.2015.02.029. |
[18] |
R. Wang and G. Wang,
On existence, uniqueness and regularity of viscosity solutions for the first initial boundary value problems to parabolic Monge-Ampère equation, Northeast. Math. J., 8 (1992), 417-446.
|
[19] |
R. Wang and G. Wang,
The geometric measure theoretical characterization of viscosity solutions to parabolic Monge-Ampère type equation, J. Partial Diff. Eqs., 6 (1993), 237-254.
|
[20] |
R. Wang and G. Wang,
On another kind of parabolic Monge-Ampère equation: The existence, uniqueness and regularity of the viscosity solution, Northeastern Mathematical Journal, 10 (1994), 434-454.
|
[21] |
J. Xiong and J. Bao,
On Jögens, Calabi, and Pogorelov type theorem and isolated singularities of parabolic Monge-Ampère equations, J. Differ. Equ., 250 (2011), 367-385.
doi: 10.1016/j.jde.2010.08.024. |
[22] |
W. Zhang, J. Bao and B. Wang, An extension of Jörgens-Calabi-Pogorelov theorem to parabolic Monge-Ampère equation, Calc. Var. Partial Differential Equations, 57 (2018), Paper No. 90, 36 pp.
doi: 10.1007/s00526-018-1363-5. |
[1] |
Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297 |
[2] |
Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267 |
[3] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020395 |
[4] |
Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278 |
[5] |
Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230 |
[6] |
Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361 |
[7] |
Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249 |
[8] |
Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282 |
[9] |
Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020109 |
[10] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020374 |
[11] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
[12] |
Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255 |
[13] |
Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128 |
[14] |
Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262 |
[15] |
Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020106 |
[16] |
Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048 |
[17] |
Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020463 |
[18] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[19] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[20] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
2019 Impact Factor: 1.338
Tools
Article outline
[Back to Top]