We classify all nonnegative nontrivial classical solutions to the equation
$ (-\Delta)^{\frac{\alpha}{2}} u = c_1 \left(\frac{1}{|x|^{n-\beta}} * f(u)\right) g(u) + c_2 h(u) \quad\text{ in } \mathbb{R}^n, $
where $ 0<\alpha,\beta<n $, $ c_1,c_2\ge0 $, $ c_1+c_2>0 $ and $ f,g,h \in C([0, +\infty),[0, +\infty)) $ are increasing functions such that $ {f(t)}/{t^{\frac{n+\beta}{n-\alpha}}} $, $ {g(t)}/{t^{\frac{\alpha+\beta}{n-\alpha}}} $, $ {h(t)}/{t^{\frac{n+\alpha}{n-\alpha}}} $ are nonincreasing in $ (0, +\infty) $. We also derive a Liouville type theorem for the equation in the case $ \alpha\ge n $. The main tool we use is the method of moving spheres in integral forms.
Citation: |
[1] |
G. Bianchi, Non-existence of positive solutions to semilinear elliptic equations on ${\bf R}^n$ or ${\bf R}^n_{+}$ through the method of moving planes, Comm. Partial Differential Equations, 22 (1997), 1671-1690.
doi: 10.1080/03605309708821315.![]() ![]() ![]() |
[2] |
L. A. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304.![]() ![]() ![]() |
[3] |
D. Cao and W. Dai, Classification of nonnegative solutions to a bi-harmonic equation with Hartree type nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 149 (2019), 979-994.
doi: 10.1017/prm.2018.67.![]() ![]() ![]() |
[4] |
D. Cao, W. Dai and G. Qin, Super poly-harmonic properties, Liouville theorems and classification of nonnegative solutions to equations involving higher-order fractional Laplacians, Preprint, arXiv: 1905.04300.
![]() |
[5] |
W. Chen, W. Dai and G. Qin, Liouville type theorems, a priori estimates and existence of solutions for critical order Hardy-Hénon equations in $\mathbb{R}^{n}$, Preprint, arXiv: 1808.06609.
![]() |
[6] |
W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.
doi: 10.1215/S0012-7094-91-06325-8.![]() ![]() ![]() |
[7] |
W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications, Commun. Pure Appl. Anal., 12 (2013), 2497-2514.
doi: 10.3934/cpaa.2013.12.2497.![]() ![]() ![]() |
[8] |
W. Chen, C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.
doi: 10.1016/j.aim.2016.11.038.![]() ![]() ![]() |
[9] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116.![]() ![]() ![]() |
[10] |
W. Chen, Y. Li and R. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272 (2017), 4131-4157.
doi: 10.1016/j.jfa.2017.02.022.![]() ![]() ![]() |
[11] |
W. Dai, Y. Fang and G. Qin, Classification of positive solutions to fractional order {H}artree equations via a direct method of moving planes, J. Differential Equations, 265 (2018), 2044-2063.
doi: 10.1016/j.jde.2018.04.026.![]() ![]() ![]() |
[12] |
W. Dai, J. Huang, Y. Qin, B. Wang and Y. Fang, Regularity and classification of solutions to static Hartree equations involving fractional Laplacians, Discrete Contin. Dyn. Syst., 39 (2019), 1389-1403.
doi: 10.3934/dcds.2018117.![]() ![]() ![]() |
[13] |
W. Dai and Z. Liu, Classification of nonnegative solutions to static Schrödinger–Hartree and Schrödinger–Maxwell equations with combined nonlinearities, Calc. Var. Partial Differential Equations, 58 (2019), Paper No. 156, 24pp.
doi: 10.1007/s00526-019-1595-z.![]() ![]() ![]() |
[14] |
W. Dai, Z. Liu and G. Qin, Classification of nonnegative solutions to static Schrödinger-Hartree-Maxwell type equations, Preprint, arXiv: 1909.00492.
![]() |
[15] |
W. Dai and G. Qin, Classification of nonnegative classical solutions to third-order equations, Adv. Math., 328 (2018), 822-857.
doi: 10.1016/j.aim.2018.02.016.![]() ![]() ![]() |
[16] |
L. Damascelli and F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains, Rev. Mat. Iberoamericana, 20 (2004), 67-86.
doi: 10.4171/RMI/380.![]() ![]() ![]() |
[17] |
P. d'Avenia, G. Siciliano and M. Squassina, On fractional Choquard equations, Math. Models Methods Appl. Sci., 25 (2015), 1447-1476.
doi: 10.1142/S0218202515500384.![]() ![]() ![]() |
[18] |
M. Ghimenti and J. Van Schaftingen, Nodal solutions for the Choquard equation, J. Funct. Anal., 271 (2016), 107-135.
doi: 10.1016/j.jfa.2016.04.019.![]() ![]() ![]() |
[19] |
B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6 (1981), 883-901.
doi: 10.1080/03605308108820196.![]() ![]() ![]() |
[20] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1998 edition.
![]() ![]() |
[21] |
L. Grafakos and C. Morpurgo, A Selberg integral formula and applications, Pacific J. Math., 191 (1999), 85-94.
doi: 10.2140/pjm.1999.191.85.![]() ![]() ![]() |
[22] |
L. Guo, T. Hu, S. Peng and W. Shuai, Existence and uniqueness of solutions for Choquard equation involving Hardy–Littlewood–Sobolev critical exponent, Calc. Var. Partial Differential Equations, 58 (2019), Paper No. 128, 34pp.
doi: 10.1007/s00526-019-1585-1.![]() ![]() ![]() |
[23] |
T. Kulczycki, Properties of Green function of symmetric stable processes, Probab. Math. Statist., 17 (1997), 339-364.
![]() ![]() |
[24] |
P. Le, Liouville theorem and classification of positive solutions for a fractional Choquard type equation, Nonlinear Anal., 185 (2019), 123-141.
doi: 10.1016/j.na.2019.03.006.![]() ![]() ![]() |
[25] |
P. Le, Symmetry and classification of solutions to an integral equation of the Choquard type, C. R. Math. Acad. Sci. Paris, 357 (2019), 878-888.
doi: 10.1016/j.crma.2019.11.005.![]() ![]() ![]() |
[26] |
P. Le, Liouville theorems for an integral equation of Choquard type, Commun. Pure Appl. Anal., 19 (2020), 771-783.
doi: 10.3934/cpaa.2020036.![]() ![]() ![]() |
[27] |
P. Le, On classical solutions to the Hartree equation, J. Math. Anal. Appl., 485 (2020), 123859, 10pp.
doi: 10.1016/j.jmaa.2020.123859.![]() ![]() ![]() |
[28] |
Y. Lei, Liouville theorems and classification results for a nonlocal Schrödinger equation, Discrete Contin. Dyn. Syst., 38 (2018), 5351-5377.
doi: 10.3934/dcds.2018236.![]() ![]() ![]() |
[29] |
Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc. (JEMS), 6 (2004), 153-180.
doi: 10.4171/JEMS/6.![]() ![]() ![]() |
[30] |
Y. Li and L. Zhang, Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations, J. Anal. Math., 90 (2003), 27-87.
doi: 10.1007/BF02786551.![]() ![]() ![]() |
[31] |
E. H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys., 53 (1977), 185-194.
doi: 10.1007/BF01609845.![]() ![]() ![]() |
[32] |
C.-S. Lin, A classification of solutions of a conformally invariant fourth order equation in Rn, Comment. Math. Helv., 73 (1998), 206-231.
doi: 10.1007/s000140050052.![]() ![]() ![]() |
[33] |
S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations, Nonlinear Anal., 71 (2009), 1796-1806.
doi: 10.1016/j.na.2009.01.014.![]() ![]() ![]() |
[34] |
L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467.
doi: 10.1007/s00205-008-0208-3.![]() ![]() ![]() |
[35] |
I. M. Moroz, R. Penrose and P. Tod, Spherically-symmetric solutions of the Schrödinger-Newton equations, Classical Quantum Gravity, 15 (1998), 2733-2742.
doi: 10.1088/0264-9381/15/9/019.![]() ![]() ![]() |
[36] |
V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.
doi: 10.1016/j.jfa.2013.04.007.![]() ![]() ![]() |
[37] |
V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math., 17 (2015), 1550005, 12pp.
doi: 10.1142/S0219199715500054.![]() ![]() ![]() |
[38] |
V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.
doi: 10.1007/s11784-016-0373-1.![]() ![]() ![]() |
[39] |
S. Pekar, Untersuchung über die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954.
![]() |
[40] |
L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.
doi: 10.1002/cpa.20153.![]() ![]() ![]() |
[41] |
J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228.
doi: 10.1007/s002080050258.![]() ![]() ![]() |
[42] |
D. Xu and Y. Lei, Classification of positive solutions for a static Schrödinger-Maxwell equation with fractional Laplacian, Appl. Math. Lett., 43 (2015), 85-89.
doi: 10.1016/j.aml.2014.12.007.![]() ![]() ![]() |
[43] |
L. Zhang and Y. Wang, Symmetry of solutions to semilinear equations involving the fractional laplacian on ${\mathbb R}^n$ and ${\mathbb R}^n_+$, Preprint, arXiv: 1610.00122.
![]() |
[44] |
R. Zhuo, W. Chen, X. Cui and Z. Yuan, Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian, Discrete Contin. Dyn. Syst., 36 (2016), 1125-1141.
doi: 10.3934/dcds.2016.36.1125.![]() ![]() ![]() |