
-
Previous Article
Study of fractional Poincaré inequalities on unbounded domains
- DCDS Home
- This Issue
-
Next Article
Cylinder absolute games on solenoids
Reversible perturbations of conservative Hénon-like maps
1. | Universitat Politècnica de Catalunya, Barcelona, Spain |
2. | Mathematical Center "Mathematics of Future Technologies", Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia |
3. | Laboratory of Dynamical Systems and Applications, National Research University Higher School of Economics, Nizhny Novgorod, Russia |
For area-preserving Hénon-like maps and their compositions, we consider smooth perturbations that keep the reversibility of the initial maps but destroy their conservativity. For constructing such perturbations, we use two methods, a new method based on reversible properties of maps written in the so-called cross-form, and the classical Quispel-Roberts method based on a variation of involutions of the initial map. We study symmetry breaking bifurcations of symmetric periodic orbits in reversible families containing quadratic conservative orientable and nonorientable Hénon maps as well as a product of two Hénon maps whose Jacobians are mutually inverse.
References:
[1] |
V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, 2$^nd$ edition, Springer-Verlag, NY, 1996.
doi: 10.1007/978-1-4612-1037-5. |
[2] |
V. S. Biragov, Bifurcations in a two-parameter family of conservative mappings that are close to the Hénon mapping, Selecta Math. Soviet, 9 (1990), 273-282. Google Scholar |
[3] |
R. L. Devaney,
Reversible diffeomorphisms and flows, Trans. Am. Math. Soc., 218 (1976), 89-113.
doi: 10.1090/S0002-9947-1976-0402815-3. |
[4] |
A. Delshams, S. V. Gonchenko, V. S. Gonchenko, J. T. Lazaro and O. Sten'kin,
Abundance of attracting, repelling and elliptic orbits in two-dimensional reversible maps, Nonlinearity, 26 (2013), 1-33.
doi: 10.1088/0951-7715/26/1/1. |
[5] |
A. Delshams, M. Gonchenko, S. V. Gonchenko and and J. T. Lazaro,
Mixed dynamics of 2-dimensional reversible maps with a symmetric couple of quadratic homoclinic tangencies, Discrete Contin. Dyn. Syst., 38 (2018), 4483-4507.
doi: 10.3934/dcds.2018196. |
[6] |
A. A. Emelianova, V. I. Nekorkin, On the intersection of a chaotic attractor and a chaotic repeller in the system of two adaptively coupled phase oscillators, Chaos, 29 (2019), 111102.
doi: 10.1063/1.5130994. |
[7] |
A. A. Emelianova, V. I. Nekorkin, The third type of chaos in a system of two adaptively coupled phase oscillators, Chaos, 30 (2020), 051105.
doi: 10.1063/5.0009525. |
[8] |
A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov and D. V. Turaev,
On the phenomenon of mixed dynamics in Pikovsky-Topaj system of coupled rotators, Phys. D, 350 (2017), 45-57.
doi: 10.1016/j.physd.2017.02.002. |
[9] |
M. Gonchenko, S. Gonchenko and I. Ovsyannikov,
Bifurcations of cubic homoclinic tangencies in two-dimensional symplectic maps, Math. Model. Nat. Phenom., 12 (2017), 41-61.
doi: 10.1051/mmnp/201712104. |
[10] |
S. Gonchenko,
Reversible mixed dynamics: A concept and examples, Discontinuity, Nonlinearity, and Complexity, 5 (2016), 345-354.
doi: 10.5890/DNC.2016.12.003. |
[11] |
M. S. Gonchenko, A. O. Kazakov, E. A. Samylina and A. I. Shyhmamedov, On the 1: 3 resonance under reversible perturbations of conservative cubic Hénon maps, preprint, 2020. Google Scholar |
[12] |
S. V. Gonchenko and D. V. Turaev,
On three types of dynamics and the notion of attractor, Proc. Steklov Inst. Math., 297 (2017), 116-137.
doi: 10.1134/S0371968517020078. |
[13] |
S. V. Gonchenko, A. S. Gonchenko and A. O. Kazakov,
Richness of chaotic dynamics in nonholonomic models of a Celtic stone, Regu. Chaotic Dyn., 18 (2013), 521-538.
doi: 10.1134/S1560354713050055. |
[14] |
S. V. Gonchenko, D. V. Turaev and L. P. Shilnikov, On the existence of Newhouse domains in a neighborhood of systems with a structurally unstable Poincare homoclinic curve (the higher-dimensional case), Dokl. Math., 47 (1993), 268-273. Google Scholar |
[15] |
S. V. Gonchenko, D. V. Turaev and L. P. Shil'nikov,
On Newhouse domains of two-dimensional diffeomorphisms that are close to a diffeomorphism with a structurally unstable heteroclinic contour, Proc. Steklov Inst. Math., 216 (1997), 70-118.
|
[16] |
S. V. Gonchenko, J. S. V. Lèmb, I. Rios and D. Turaev,
Attractors and repellers in the neighborhood of elliptic points of reversible systems, Dokl. Math., 89 (2014), 65-67.
|
[17] |
S. V. Gonchenko, M. S. Gonchenko and I. O. Sinitsky,
On mixed dynamics of two-dimensional reversible diffeomorphisms with symmetric non-transversal heteroclinic cycles, Izv. Ross. Akad. Nauk Ser. Mat., 84 (2020), 27-59.
doi: 10.4213/im8786. |
[18] |
A. O. Kazakov,
On the appearance of mixed dynamics as a result of collision of strange attractors and repellers in reversible systems, Radiophysics and Quantum Electronics, 61 (2019), 650-658.
doi: 10.1007/s11141-019-09925-6. |
[19] |
A. O. Kazakov, Merger of a Hénon-like attractor with a Hńon-like repeller in a model of vortex dynamics, Chaos, 30 (2020), 011105.
doi: 10.1063/1.5144144. |
[20] |
J. S. W. Lamb and J. A. G. Roberts,
Time-reversal symmetry in dynamical systems: A survey, Phys. D, 112 (1998), 1-39.
doi: 10.1016/S0167-2789(97)00199-1. |
[21] |
J. S. W. Lamb and O. V. Stenkin,
Newhouse regions for reversible systems with infinitely many stable, unstable and elliptic periodic orbits, Nonlinearity, 17 (2004), 1217-1244.
doi: 10.1088/0951-7715/17/4/005. |
[22] |
L. M. Lerman and D. V. Turaev,
Breakdown of symmetry in reversible systems, Reg. Chaotic Dyn., 17 (2012), 318-336.
doi: 10.1134/S1560354712030082. |
[23] |
S. E. Newhouse,
The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 101-151.
|
[24] |
S. E. Newhouse,
Diffeomorphisms with infinitely many sinks, Topology, 13 (1974), 9-18.
doi: 10.1016/0040-9383(74)90034-2. |
[25] |
J. Palis and M. Viana,
High dimension diffeomorphisms displaying infinitely many periodic attractors, Ann. of Math. 2, 140 (1994), 207-250.
doi: 10.2307/2118546. |
[26] |
A. Politi, G. L. Oppo and R. Badii, Coexistence of conservative and dissipative behaviour in reversible dynamicla systems, Phys. Rev. A, 33 (1986), 4055-4060. Google Scholar |
[27] |
T. Post, H. W. Capel, G. R. W. Quispel and J. R. van der Weele,
Bifurcations in two-dimensional reversible maps, Phys. A, 164 (1990), 625-662.
doi: 10.1016/0378-4371(90)90226-I. |
[28] |
J. A. G. Roberts and G. R. W. Quispel,
Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems, Phys. Rep., 216 (1992), 63-177.
doi: 10.1016/0370-1573(92)90163-T. |
[29] |
N. Romero,
Persistence of homoclinic tangencies in higher dimensions, Ergodic Theory Dynam. Systems., 15 (1995), 735-757.
doi: 10.1017/S0143385700008634. |
[30] |
D. Ruelle,
Small random perturbations of dynamical systems and the definition of attractors, Comm. Math. Phys., 82 (1981), 137-151.
doi: 10.1007/BF01206949. |
[31] |
D. Ruelle, Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics, Addison-Wesley Publishing Co., Reading, MA, 1978. |
[32] |
M. B. Sevryuk, Reversible Systems, Lect. Notes Math., Vol. 1211, Springer-Verlag, Berlin, 1986.
doi: 10.1007/BFb0075877. |
[33] |
C. Simó and A. Vieiro,
Resonant zones, inner and outer splitting in generic and low order resonances of area preserving maps, Nonlinearity, 22 (2009), 1191-1245.
doi: 10.1088/0951-7715/22/5/012. |
[34] |
D. Turaev,
Richness of chaos in the absolute Newhouse domain, in Proc. Int. Congr. Math., Hyderabad (India), 3 (2010), 1804-1815.
|
[35] |
D. Turaev,
Maps close to identity and universal maps in the Newhouse domain, Commun. Math. Phys., 335 (2015), 1235-1277.
doi: 10.1007/s00220-015-2338-4. |
show all references
References:
[1] |
V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, 2$^nd$ edition, Springer-Verlag, NY, 1996.
doi: 10.1007/978-1-4612-1037-5. |
[2] |
V. S. Biragov, Bifurcations in a two-parameter family of conservative mappings that are close to the Hénon mapping, Selecta Math. Soviet, 9 (1990), 273-282. Google Scholar |
[3] |
R. L. Devaney,
Reversible diffeomorphisms and flows, Trans. Am. Math. Soc., 218 (1976), 89-113.
doi: 10.1090/S0002-9947-1976-0402815-3. |
[4] |
A. Delshams, S. V. Gonchenko, V. S. Gonchenko, J. T. Lazaro and O. Sten'kin,
Abundance of attracting, repelling and elliptic orbits in two-dimensional reversible maps, Nonlinearity, 26 (2013), 1-33.
doi: 10.1088/0951-7715/26/1/1. |
[5] |
A. Delshams, M. Gonchenko, S. V. Gonchenko and and J. T. Lazaro,
Mixed dynamics of 2-dimensional reversible maps with a symmetric couple of quadratic homoclinic tangencies, Discrete Contin. Dyn. Syst., 38 (2018), 4483-4507.
doi: 10.3934/dcds.2018196. |
[6] |
A. A. Emelianova, V. I. Nekorkin, On the intersection of a chaotic attractor and a chaotic repeller in the system of two adaptively coupled phase oscillators, Chaos, 29 (2019), 111102.
doi: 10.1063/1.5130994. |
[7] |
A. A. Emelianova, V. I. Nekorkin, The third type of chaos in a system of two adaptively coupled phase oscillators, Chaos, 30 (2020), 051105.
doi: 10.1063/5.0009525. |
[8] |
A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov and D. V. Turaev,
On the phenomenon of mixed dynamics in Pikovsky-Topaj system of coupled rotators, Phys. D, 350 (2017), 45-57.
doi: 10.1016/j.physd.2017.02.002. |
[9] |
M. Gonchenko, S. Gonchenko and I. Ovsyannikov,
Bifurcations of cubic homoclinic tangencies in two-dimensional symplectic maps, Math. Model. Nat. Phenom., 12 (2017), 41-61.
doi: 10.1051/mmnp/201712104. |
[10] |
S. Gonchenko,
Reversible mixed dynamics: A concept and examples, Discontinuity, Nonlinearity, and Complexity, 5 (2016), 345-354.
doi: 10.5890/DNC.2016.12.003. |
[11] |
M. S. Gonchenko, A. O. Kazakov, E. A. Samylina and A. I. Shyhmamedov, On the 1: 3 resonance under reversible perturbations of conservative cubic Hénon maps, preprint, 2020. Google Scholar |
[12] |
S. V. Gonchenko and D. V. Turaev,
On three types of dynamics and the notion of attractor, Proc. Steklov Inst. Math., 297 (2017), 116-137.
doi: 10.1134/S0371968517020078. |
[13] |
S. V. Gonchenko, A. S. Gonchenko and A. O. Kazakov,
Richness of chaotic dynamics in nonholonomic models of a Celtic stone, Regu. Chaotic Dyn., 18 (2013), 521-538.
doi: 10.1134/S1560354713050055. |
[14] |
S. V. Gonchenko, D. V. Turaev and L. P. Shilnikov, On the existence of Newhouse domains in a neighborhood of systems with a structurally unstable Poincare homoclinic curve (the higher-dimensional case), Dokl. Math., 47 (1993), 268-273. Google Scholar |
[15] |
S. V. Gonchenko, D. V. Turaev and L. P. Shil'nikov,
On Newhouse domains of two-dimensional diffeomorphisms that are close to a diffeomorphism with a structurally unstable heteroclinic contour, Proc. Steklov Inst. Math., 216 (1997), 70-118.
|
[16] |
S. V. Gonchenko, J. S. V. Lèmb, I. Rios and D. Turaev,
Attractors and repellers in the neighborhood of elliptic points of reversible systems, Dokl. Math., 89 (2014), 65-67.
|
[17] |
S. V. Gonchenko, M. S. Gonchenko and I. O. Sinitsky,
On mixed dynamics of two-dimensional reversible diffeomorphisms with symmetric non-transversal heteroclinic cycles, Izv. Ross. Akad. Nauk Ser. Mat., 84 (2020), 27-59.
doi: 10.4213/im8786. |
[18] |
A. O. Kazakov,
On the appearance of mixed dynamics as a result of collision of strange attractors and repellers in reversible systems, Radiophysics and Quantum Electronics, 61 (2019), 650-658.
doi: 10.1007/s11141-019-09925-6. |
[19] |
A. O. Kazakov, Merger of a Hénon-like attractor with a Hńon-like repeller in a model of vortex dynamics, Chaos, 30 (2020), 011105.
doi: 10.1063/1.5144144. |
[20] |
J. S. W. Lamb and J. A. G. Roberts,
Time-reversal symmetry in dynamical systems: A survey, Phys. D, 112 (1998), 1-39.
doi: 10.1016/S0167-2789(97)00199-1. |
[21] |
J. S. W. Lamb and O. V. Stenkin,
Newhouse regions for reversible systems with infinitely many stable, unstable and elliptic periodic orbits, Nonlinearity, 17 (2004), 1217-1244.
doi: 10.1088/0951-7715/17/4/005. |
[22] |
L. M. Lerman and D. V. Turaev,
Breakdown of symmetry in reversible systems, Reg. Chaotic Dyn., 17 (2012), 318-336.
doi: 10.1134/S1560354712030082. |
[23] |
S. E. Newhouse,
The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 101-151.
|
[24] |
S. E. Newhouse,
Diffeomorphisms with infinitely many sinks, Topology, 13 (1974), 9-18.
doi: 10.1016/0040-9383(74)90034-2. |
[25] |
J. Palis and M. Viana,
High dimension diffeomorphisms displaying infinitely many periodic attractors, Ann. of Math. 2, 140 (1994), 207-250.
doi: 10.2307/2118546. |
[26] |
A. Politi, G. L. Oppo and R. Badii, Coexistence of conservative and dissipative behaviour in reversible dynamicla systems, Phys. Rev. A, 33 (1986), 4055-4060. Google Scholar |
[27] |
T. Post, H. W. Capel, G. R. W. Quispel and J. R. van der Weele,
Bifurcations in two-dimensional reversible maps, Phys. A, 164 (1990), 625-662.
doi: 10.1016/0378-4371(90)90226-I. |
[28] |
J. A. G. Roberts and G. R. W. Quispel,
Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems, Phys. Rep., 216 (1992), 63-177.
doi: 10.1016/0370-1573(92)90163-T. |
[29] |
N. Romero,
Persistence of homoclinic tangencies in higher dimensions, Ergodic Theory Dynam. Systems., 15 (1995), 735-757.
doi: 10.1017/S0143385700008634. |
[30] |
D. Ruelle,
Small random perturbations of dynamical systems and the definition of attractors, Comm. Math. Phys., 82 (1981), 137-151.
doi: 10.1007/BF01206949. |
[31] |
D. Ruelle, Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics, Addison-Wesley Publishing Co., Reading, MA, 1978. |
[32] |
M. B. Sevryuk, Reversible Systems, Lect. Notes Math., Vol. 1211, Springer-Verlag, Berlin, 1986.
doi: 10.1007/BFb0075877. |
[33] |
C. Simó and A. Vieiro,
Resonant zones, inner and outer splitting in generic and low order resonances of area preserving maps, Nonlinearity, 22 (2009), 1191-1245.
doi: 10.1088/0951-7715/22/5/012. |
[34] |
D. Turaev,
Richness of chaos in the absolute Newhouse domain, in Proc. Int. Congr. Math., Hyderabad (India), 3 (2010), 1804-1815.
|
[35] |
D. Turaev,
Maps close to identity and universal maps in the Newhouse domain, Commun. Math. Phys., 335 (2015), 1235-1277.
doi: 10.1007/s00220-015-2338-4. |




[1] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[2] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[3] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[4] |
Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053 |
[5] |
Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020342 |
[6] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[7] |
Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281 |
[8] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[9] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020408 |
[10] |
Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020376 |
[11] |
Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030 |
[12] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
[13] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
[14] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020390 |
[15] |
Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020460 |
[16] |
Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129 |
[17] |
Luis Caffarelli, Fanghua Lin. Nonlocal heat flows preserving the L2 energy. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 49-64. doi: 10.3934/dcds.2009.23.49 |
[18] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020407 |
[19] |
Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105 |
[20] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]