-
Previous Article
Cylinder absolute games on solenoids
- DCDS Home
- This Issue
-
Next Article
Measures and stabilizers of group Cantor actions
A $ G^{\delta, 1} $ almost conservation law for mCH and the evolution of its radius of spatial analyticity
1. | University of Notre Dame, Department of Mathematics, Notre Dame, IN 46556, USA |
2. | Universidade Federal de São Carlos, Departamento de Matemática, São Carlos, SP 13565-905, Brazil |
The Cauchy problem of the modified Camassa-Holm (mCH) equation with initial data $ u(0) $ that are analytic on the line and have uniform radius of analyticity $ r(0) $ is considered. First, by using bilinear estimates for the nonlocal nonlinearity in analytic Bourgain spaces, it is shown that this equation is well-posed in analytic Gevrey spaces $ G^{\delta, s} $, with useful solution lifespan $ T_0 $ and size estimates. This shows that the radius of spatial analyticity $ r(t) $ persists during the time interval $ [-T_0, T_0] $. Then, exploiting the fact that solutions to this equation conserve the $ H^1 $ norm, and utilizing the available bilinear estimates, an almost conservation low in $ G^{\delta,1} $ spaces is proved. Finally, using this almost conservation law it is shown that the solution $ u(t) $ exists for all time $ t $ and a lower bound for the radius of spatial analyticity is provided.
References:
[1] |
R. F. Barostichi, A. A. Himonas and G. Petronilho,
Autonomous Ovsyannikov theorem and applications to nonlocal evolution equations and systems, J. Funct. Anal., 270 (2016), 330-358.
doi: 10.1016/j.jfa.2015.06.008. |
[2] |
J. L. Bona, Z. Grujić and H. Kalisch,
Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 783-797.
doi: 10.1016/j.anihpc.2004.12.004. |
[3] |
J. Bourgain,
Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part 2: KdV equation, Geom. Funct. Anal., 3 (1993), 209-262.
doi: 10.1007/BF01895688. |
[4] |
J. Bourgain,
Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part 1: Schrödinger equation, Geom. Funct. Anal., 3 (1993), 209-262.
|
[5] |
J. Bourgain,
On the Cauchy problem for periodic KdV-type equations, J. Fourier Anal. Appl., 1993 (1995), 17-86.
|
[6] |
A. Bressan and A. Constantin,
Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.
doi: 10.1007/s00205-006-0010-z. |
[7] |
R. Camassa and D. D. Holm,
An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661. |
[8] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
Sharp global well-posedness for KdV and modified KdV on $\mathbb R$ and $\mathbb T$, J. Amer. Math. Soc., 16 (2003), 705-749.
doi: 10.1090/S0894-0347-03-00421-1. |
[9] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
Multilinear estimates for periodic KdV equations, and applications, J. Funct. Anal., 211 (2004), 173-218.
doi: 10.1016/S0022-1236(03)00218-0. |
[10] |
A. Constantin and J. Escher,
Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1998), 303-328.
|
[11] |
A. Constantin and J. Escher,
Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.
doi: 10.1007/BF02392586. |
[12] |
A. Constantin and D. Lannes,
The hydrodynamical relevance of the Camassa-Holm and Degasperi-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.
doi: 10.1007/s00205-008-0128-2. |
[13] |
A. Constantin and W. A. Strauss,
Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.
doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L. |
[14] |
R. Danchin,
A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988.
|
[15] |
R. Figuera, A. A. Himonas and F. Yan, A higher dispersion KdV equation on the line, Nonlinear Anal., 199 (2000), 112055, 38 pp.
doi: 10.1016/j.na.2020.112055. |
[16] |
C. Foias and R. Temam,
Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359-369.
doi: 10.1016/0022-1236(89)90015-3. |
[17] |
B. Fuchssteiner and A. S. Fokas,
Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/1982), 47-66.
doi: 10.1016/0167-2789(81)90004-X. |
[18] |
Z. Grujić and H. Kalisch,
Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions, Differential and Integral Equations, 15 (2002), 1325-1334.
|
[19] |
A. A. Himonas, H. Kalisch and S. Selberg,
On persistence of spatial analyticity for the dispersion-generalized periodic KdV equation, Nonlinear Anal. Real World Appl, 38 (2017), 35-48.
doi: 10.1016/j.nonrwa.2017.04.003. |
[20] |
A. A. Himonas and G. Misiołek,
Global well-posedness of the Cauchy problem for a shallow water equation on the circle, J. Differential Equations, 161 (2000), 479-495.
doi: 10.1006/jdeq.1999.3695. |
[21] |
A. A. Himonas and C. Kenig,
Non-uniform dependence on initial data for the CH equation on the line, Differential Integral Equations, 22 (2009), 201-224.
|
[22] |
A. A. Himonas and G. Misiołek,
The Cauchy problem for a shallow water type equation, Comm. Partial Differential Equations, 23 (1998), 123-139.
doi: 10.1080/03605309808821340. |
[23] |
A. A. Himonas and G. Misiołek,
Analyticity of the Cauchy problem for an integrable evolution equation, Math. Ann., 327 (2003), 575-584.
doi: 10.1007/s00208-003-0466-1. |
[24] |
H. Hirayama,
Local well-posedness for the periodic higher order KdV type equations, NoDEA Nonlinear Differential Equations Appl., 19 (2012), 677-693.
doi: 10.1007/s00030-011-0147-9. |
[25] |
T. Kato,
On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Advances in Mathematics Supplementary Studies, Studies in Applied Math., 8 (1983), 93-128.
|
[26] |
T. Kato and K. Masuda,
Nonlinear evolution equations and analyticity I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 455-467.
doi: 10.1016/S0294-1449(16)30377-8. |
[27] |
Y. Katznelson, An Introduction to Harmonic Analysis Corrected ed., Dover Publications, Inc., New York, 1976. |
[28] |
C. Kenig, G. Ponce and L. Vega,
A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.
doi: 10.1090/S0894-0347-96-00200-7. |
[29] |
C. E. Kenig, G. Ponce and L. Vega,
Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.
doi: 10.1090/S0894-0347-1991-1086966-0. |
[30] |
C. E. Kenig, G. Ponce and L. Vega,
Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principl, Comm. Pure Appl. Math., 46 (1993), 527-620.
doi: 10.1002/cpa.3160460405. |
[31] |
C. E. Kenig, G. Ponce and L. Vega,
Higher-order nonlinear dispersive equations, Proc. Amer. Math. Soc., 122 (1994), 157-166.
doi: 10.1090/S0002-9939-1994-1195480-8. |
[32] |
D. J. Korteweg and G. de Vries,
On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 39 (1895), 422-443.
doi: 10.1080/14786449508620739. |
[33] |
J. Lenells,
Traveling wave solutions of the Camassa-Holm equation, J. Differential Equations, 217 (2005), 393-430.
doi: 10.1016/j.jde.2004.09.007. |
[34] |
Y. A. Li and P. J. Olver,
Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.
doi: 10.1006/jdeq.1999.3683. |
[35] |
F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Universitext Springer, New York, 2009. |
[36] |
G. Rodríguez-Blanco,
On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46 (2001), 309-327.
doi: 10.1016/S0362-546X(01)00791-X. |
[37] |
S. Selberg and D. O. da Silva,
Lower Bounds on the radius of a spatial analyticity for the KdV equation, Ann. Henri Poincaré, 18 (2017), 1009-1023.
doi: 10.1007/s00023-016-0498-1. |
[38] |
T. Tao, Nonlinear Dispersive Equations-Local and Global Analysis, CBMS Regional Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006.
doi: 10.1090/cbms/106. |
show all references
References:
[1] |
R. F. Barostichi, A. A. Himonas and G. Petronilho,
Autonomous Ovsyannikov theorem and applications to nonlocal evolution equations and systems, J. Funct. Anal., 270 (2016), 330-358.
doi: 10.1016/j.jfa.2015.06.008. |
[2] |
J. L. Bona, Z. Grujić and H. Kalisch,
Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 783-797.
doi: 10.1016/j.anihpc.2004.12.004. |
[3] |
J. Bourgain,
Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part 2: KdV equation, Geom. Funct. Anal., 3 (1993), 209-262.
doi: 10.1007/BF01895688. |
[4] |
J. Bourgain,
Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part 1: Schrödinger equation, Geom. Funct. Anal., 3 (1993), 209-262.
|
[5] |
J. Bourgain,
On the Cauchy problem for periodic KdV-type equations, J. Fourier Anal. Appl., 1993 (1995), 17-86.
|
[6] |
A. Bressan and A. Constantin,
Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.
doi: 10.1007/s00205-006-0010-z. |
[7] |
R. Camassa and D. D. Holm,
An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661. |
[8] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
Sharp global well-posedness for KdV and modified KdV on $\mathbb R$ and $\mathbb T$, J. Amer. Math. Soc., 16 (2003), 705-749.
doi: 10.1090/S0894-0347-03-00421-1. |
[9] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
Multilinear estimates for periodic KdV equations, and applications, J. Funct. Anal., 211 (2004), 173-218.
doi: 10.1016/S0022-1236(03)00218-0. |
[10] |
A. Constantin and J. Escher,
Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1998), 303-328.
|
[11] |
A. Constantin and J. Escher,
Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.
doi: 10.1007/BF02392586. |
[12] |
A. Constantin and D. Lannes,
The hydrodynamical relevance of the Camassa-Holm and Degasperi-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.
doi: 10.1007/s00205-008-0128-2. |
[13] |
A. Constantin and W. A. Strauss,
Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.
doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L. |
[14] |
R. Danchin,
A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988.
|
[15] |
R. Figuera, A. A. Himonas and F. Yan, A higher dispersion KdV equation on the line, Nonlinear Anal., 199 (2000), 112055, 38 pp.
doi: 10.1016/j.na.2020.112055. |
[16] |
C. Foias and R. Temam,
Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359-369.
doi: 10.1016/0022-1236(89)90015-3. |
[17] |
B. Fuchssteiner and A. S. Fokas,
Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/1982), 47-66.
doi: 10.1016/0167-2789(81)90004-X. |
[18] |
Z. Grujić and H. Kalisch,
Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions, Differential and Integral Equations, 15 (2002), 1325-1334.
|
[19] |
A. A. Himonas, H. Kalisch and S. Selberg,
On persistence of spatial analyticity for the dispersion-generalized periodic KdV equation, Nonlinear Anal. Real World Appl, 38 (2017), 35-48.
doi: 10.1016/j.nonrwa.2017.04.003. |
[20] |
A. A. Himonas and G. Misiołek,
Global well-posedness of the Cauchy problem for a shallow water equation on the circle, J. Differential Equations, 161 (2000), 479-495.
doi: 10.1006/jdeq.1999.3695. |
[21] |
A. A. Himonas and C. Kenig,
Non-uniform dependence on initial data for the CH equation on the line, Differential Integral Equations, 22 (2009), 201-224.
|
[22] |
A. A. Himonas and G. Misiołek,
The Cauchy problem for a shallow water type equation, Comm. Partial Differential Equations, 23 (1998), 123-139.
doi: 10.1080/03605309808821340. |
[23] |
A. A. Himonas and G. Misiołek,
Analyticity of the Cauchy problem for an integrable evolution equation, Math. Ann., 327 (2003), 575-584.
doi: 10.1007/s00208-003-0466-1. |
[24] |
H. Hirayama,
Local well-posedness for the periodic higher order KdV type equations, NoDEA Nonlinear Differential Equations Appl., 19 (2012), 677-693.
doi: 10.1007/s00030-011-0147-9. |
[25] |
T. Kato,
On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Advances in Mathematics Supplementary Studies, Studies in Applied Math., 8 (1983), 93-128.
|
[26] |
T. Kato and K. Masuda,
Nonlinear evolution equations and analyticity I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 455-467.
doi: 10.1016/S0294-1449(16)30377-8. |
[27] |
Y. Katznelson, An Introduction to Harmonic Analysis Corrected ed., Dover Publications, Inc., New York, 1976. |
[28] |
C. Kenig, G. Ponce and L. Vega,
A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.
doi: 10.1090/S0894-0347-96-00200-7. |
[29] |
C. E. Kenig, G. Ponce and L. Vega,
Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.
doi: 10.1090/S0894-0347-1991-1086966-0. |
[30] |
C. E. Kenig, G. Ponce and L. Vega,
Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principl, Comm. Pure Appl. Math., 46 (1993), 527-620.
doi: 10.1002/cpa.3160460405. |
[31] |
C. E. Kenig, G. Ponce and L. Vega,
Higher-order nonlinear dispersive equations, Proc. Amer. Math. Soc., 122 (1994), 157-166.
doi: 10.1090/S0002-9939-1994-1195480-8. |
[32] |
D. J. Korteweg and G. de Vries,
On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 39 (1895), 422-443.
doi: 10.1080/14786449508620739. |
[33] |
J. Lenells,
Traveling wave solutions of the Camassa-Holm equation, J. Differential Equations, 217 (2005), 393-430.
doi: 10.1016/j.jde.2004.09.007. |
[34] |
Y. A. Li and P. J. Olver,
Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.
doi: 10.1006/jdeq.1999.3683. |
[35] |
F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Universitext Springer, New York, 2009. |
[36] |
G. Rodríguez-Blanco,
On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46 (2001), 309-327.
doi: 10.1016/S0362-546X(01)00791-X. |
[37] |
S. Selberg and D. O. da Silva,
Lower Bounds on the radius of a spatial analyticity for the KdV equation, Ann. Henri Poincaré, 18 (2017), 1009-1023.
doi: 10.1007/s00023-016-0498-1. |
[38] |
T. Tao, Nonlinear Dispersive Equations-Local and Global Analysis, CBMS Regional Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006.
doi: 10.1090/cbms/106. |
[1] |
Ying Fu. A note on the Cauchy problem of a modified Camassa-Holm equation with cubic nonlinearity. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2011-2039. doi: 10.3934/dcds.2015.35.2011 |
[2] |
Defu Chen, Yongsheng Li, Wei Yan. On the Cauchy problem for a generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 871-889. doi: 10.3934/dcds.2015.35.871 |
[3] |
Feng Wang, Fengquan Li, Zhijun Qiao. On the Cauchy problem for a higher-order μ-Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4163-4187. doi: 10.3934/dcds.2018181 |
[4] |
Giuseppe Maria Coclite, Lorenzo Di Ruvo. A note on the convergence of the solution of the high order Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1247-1282. doi: 10.3934/dcds.2017052 |
[5] |
Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the convergence of the solutions of the Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 2981-2990. doi: 10.3934/dcds.2016.36.2981 |
[6] |
Yu Gao, Jian-Guo Liu. The modified Camassa-Holm equation in Lagrangian coordinates. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2545-2592. doi: 10.3934/dcdsb.2018067 |
[7] |
Xingxing Liu, Zhijun Qiao, Zhaoyang Yin. On the Cauchy problem for a generalized Camassa-Holm equation with both quadratic and cubic nonlinearity. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1283-1304. doi: 10.3934/cpaa.2014.13.1283 |
[8] |
Zeng Zhang, Zhaoyang Yin. On the Cauchy problem for a four-component Camassa-Holm type system. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5153-5169. doi: 10.3934/dcds.2015.35.5153 |
[9] |
Aiyong Chen, Xinhui Lu. Orbital stability of elliptic periodic peakons for the modified Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1703-1735. doi: 10.3934/dcds.2020090 |
[10] |
Stephen Anco, Daniel Kraus. Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4449-4465. doi: 10.3934/dcds.2018194 |
[11] |
Byungsoo Moon. Orbital stability of periodic peakons for the generalized modified Camassa-Holm equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4409-4437. doi: 10.3934/dcdss.2021123 |
[12] |
Kai Yan, Zhaoyang Yin. Well-posedness for a modified two-component Camassa-Holm system in critical spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1699-1712. doi: 10.3934/dcds.2013.33.1699 |
[13] |
Hideshi Yamane. Local and global analyticity for $\mu$-Camassa-Holm equations. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4307-4340. doi: 10.3934/dcds.2020182 |
[14] |
Xingxing Liu. Orbital stability of peakons for a modified Camassa-Holm equation with higher-order nonlinearity. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5505-5521. doi: 10.3934/dcds.2018242 |
[15] |
Min Zhu, Shuanghu Zhang. Blow-up of solutions to the periodic modified Camassa-Holm equation with varying linear dispersion. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7235-7256. doi: 10.3934/dcds.2016115 |
[16] |
Min Zhu, Ying Wang. Blow-up of solutions to the periodic generalized modified Camassa-Holm equation with varying linear dispersion. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 645-661. doi: 10.3934/dcds.2017027 |
[17] |
Marianna Euler, Norbert Euler. Integrating factors and conservation laws for some Camassa-Holm type equations. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1421-1430. doi: 10.3934/cpaa.2012.11.1421 |
[18] |
Yongsheng Mi, Boling Guo, Chunlai Mu. Persistence properties for the generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1623-1630. doi: 10.3934/dcdsb.2019243 |
[19] |
Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065 |
[20] |
Helge Holden, Xavier Raynaud. Dissipative solutions for the Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1047-1112. doi: 10.3934/dcds.2009.24.1047 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]