-
Previous Article
Reversible perturbations of conservative Hénon-like maps
- DCDS Home
- This Issue
-
Next Article
Martin boundary of brownian motion on Gromov hyperbolic metric graphs
Cylinder absolute games on solenoids
1. | Beijing International Center for Mathematical Research, Peking University, Beijing, 100 871, China |
2. | Current address: Yau Mathematical Sciences Center, Tsinghua University, Beijing, 100 084, China |
Let $ A $ be any affine surjective endomorphism of a solenoid ${\Sigma_{{\mathcal{P}}}} $ over the circle $ S^1 $ which is not an infinite-order translation of $ {\Sigma_{{\mathcal{P}}}}$. We prove the existence of a cylinder absolute winning (CAW) subset $ F \subseteq {\Sigma_{{\mathcal{P}}}} $ with the property that for any $ x \in F $, the orbit closure $ \overline{\{ A^{\ell} x \mid \ell \in {\mathbb{N}} \}} $ does not contain any periodic orbits. A measure $ \mu $ on a metric space is said to be Federer if for all small enough balls around any generic point with respect to $ \mu $, the measure grows by at most some constant multiple on doubling the radius of the ball. The class of infinite solenoids considered in this paper provides, to the best of our knowledge, some of the early natural examples of non-Federer spaces where absolute games can be played and won. Dimension maximality and incompressibility of CAW sets is also discussed for a number of possibilities in addition to their winning nature for the games known from before.
References:
[1] |
J. An, A. Ghosh, L. Guan and T. Ly, Bounded orbits of diagonalizable flows on finite volume quotients of products of $ {\rm {SL}}_2(\mathbb R)$, Adv. Math., 354 (2019), 106743, 18 pp.
doi: 10.1016/j.aim.2019.106743. |
[2] |
C. S. Aravinda,
Bounded geodesics and Hausdorff dimension, Math. Proc. Cambridge Philos. Soc., 116 (1994), 505-511.
doi: 10.1017/S0305004100072777. |
[3] |
D. Badziahin, A. Pollington and S. Velani,
On a problem in simultaneous Diophantine approximation: Schmidt's conjecture, Ann. of Math. (2), 174 (2011), 1837-1883.
doi: 10.4007/annals.2011.174.3.9. |
[4] |
D. Berend,
Ergodic semigroups of epimorphisms, Trans. Amer. Math. Soc., 289 (1985), 393-407.
doi: 10.1090/S0002-9947-1985-0779072-7. |
[5] |
R. Broderick, L. Fishman and D. Kleinbock,
Schmidt's game, fractals, and orbits of toral endomorphisms, Ergodic Theory Dynam. Systems, 31 (2011), 1095-1107.
doi: 10.1017/S0143385710000374. |
[6] |
R. Broderick, L. Fishman, D. Kleinbock, A. Reich and B. Weiss,
The set of badly approximable vectors is strongly $C^1$ incompressible., Math. Proc. Cambridge Philos. Soc., 153 (2012), 319-339.
doi: 10.1017/S0305004112000242. |
[7] |
S. G. Dani,
Bounded orbits of flows on homogeneous spaces, Comment. Math. Helv., 61 (1986), 636-660.
|
[8] |
S. G. Dani,
On orbits of endomorphisms of tori and the Schmidt game, Ergodic Theory Dynam. Systems, 8 (1988), 523-529.
doi: 10.1017/S0143385700004673. |
[9] |
S. G. Dani, On badly approximable numbers, Schmidt games and bounded orbits of flows, in Number Theory and Dynamical Systems (eds. M. M. Dodson and J. A. G. Vickers), Cambridge Univ. Press, 134 (1989), 69–86.
doi: 10.1017/CBO9780511661983.006. |
[10] |
K. Falconer, Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1990. |
[11] |
L. Fishman, D. Simmons and M. Urbański, Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces, Mem. Amer. Math. Soc., 254 (2018), v+137pp.
doi: 10.1090/memo/1215. |
[12] |
S. A. Juzvinskiĭ, Calculation of the entropy of a group-endomorphism, Sibirsk. Mat. Ž., 8 (1967), 230–239. |
[13] |
D. Y. Kleinbock and G. A. Margulis, Bounded orbits of nonquasiunipotent flows on homogeneous spaces, in Sinaĭ 's Moscow Seminar on Dynamical Systems, Amer. Math. Soc., 28 (1996), 141–172.
doi: 10.1090/trans2/171/11. |
[14] |
D. Kleinbock and T. Ly,
Badly approximable $S$-numbers and absolute Schmidt games, J. Number Theory, 164 (2016), 13-42.
doi: 10.1016/j.jnt.2015.12.014. |
[15] |
D. Kleinbock and B. Weiss,
Modified Schmidt games and Diophantine approximation with weights, Adv. Math., 223 (2010), 1276-1298.
doi: 10.1016/j.aim.2009.09.018. |
[16] |
S. Kristensen,
Badly approximable systems of linear forms over a field of formal series., J. Théor. Nombres Bordeaux, 18 (2006), 421-444.
doi: 10.5802/jtnb.552. |
[17] |
D. A. Lind and T. Ward,
Automorphisms of solenoids and $p$-adic entropy, Ergodic Theory Dynam. Systems, 8 (1988), 411-419.
doi: 10.1017/S0143385700004545. |
[18] |
C. T. McMullen,
Winning sets, quasiconformal maps and Diophantine approximation, Geom. Funct. Anal., 20 (2010), 726-740.
doi: 10.1007/s00039-010-0078-3. |
[19] |
H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory. I. Classical Theory, Cambridge University Press, Cambridge, 2007.
![]() |
[20] |
W. M. Schmidt,
On badly approximable numbers and certain games, Trans. Amer. Math. Soc., 123 (1966), 178-199.
doi: 10.1090/S0002-9947-1966-0195595-4. |
[21] |
S. Semmes, Some remarks about solenoids, 2, preprint, arXiv: 1210.0145. Google Scholar |
[22] |
S. Weil, Schmidt games and conditions on resonant sets, preprint, arXiv: 1210.1152. Google Scholar |
[23] |
A. M. Wilson,
On endomorphisms of a solenoid, Proc. Amer. Math. Soc., 55 (1976), 69-74.
doi: 10.1090/S0002-9939-1976-0390181-7. |
show all references
References:
[1] |
J. An, A. Ghosh, L. Guan and T. Ly, Bounded orbits of diagonalizable flows on finite volume quotients of products of $ {\rm {SL}}_2(\mathbb R)$, Adv. Math., 354 (2019), 106743, 18 pp.
doi: 10.1016/j.aim.2019.106743. |
[2] |
C. S. Aravinda,
Bounded geodesics and Hausdorff dimension, Math. Proc. Cambridge Philos. Soc., 116 (1994), 505-511.
doi: 10.1017/S0305004100072777. |
[3] |
D. Badziahin, A. Pollington and S. Velani,
On a problem in simultaneous Diophantine approximation: Schmidt's conjecture, Ann. of Math. (2), 174 (2011), 1837-1883.
doi: 10.4007/annals.2011.174.3.9. |
[4] |
D. Berend,
Ergodic semigroups of epimorphisms, Trans. Amer. Math. Soc., 289 (1985), 393-407.
doi: 10.1090/S0002-9947-1985-0779072-7. |
[5] |
R. Broderick, L. Fishman and D. Kleinbock,
Schmidt's game, fractals, and orbits of toral endomorphisms, Ergodic Theory Dynam. Systems, 31 (2011), 1095-1107.
doi: 10.1017/S0143385710000374. |
[6] |
R. Broderick, L. Fishman, D. Kleinbock, A. Reich and B. Weiss,
The set of badly approximable vectors is strongly $C^1$ incompressible., Math. Proc. Cambridge Philos. Soc., 153 (2012), 319-339.
doi: 10.1017/S0305004112000242. |
[7] |
S. G. Dani,
Bounded orbits of flows on homogeneous spaces, Comment. Math. Helv., 61 (1986), 636-660.
|
[8] |
S. G. Dani,
On orbits of endomorphisms of tori and the Schmidt game, Ergodic Theory Dynam. Systems, 8 (1988), 523-529.
doi: 10.1017/S0143385700004673. |
[9] |
S. G. Dani, On badly approximable numbers, Schmidt games and bounded orbits of flows, in Number Theory and Dynamical Systems (eds. M. M. Dodson and J. A. G. Vickers), Cambridge Univ. Press, 134 (1989), 69–86.
doi: 10.1017/CBO9780511661983.006. |
[10] |
K. Falconer, Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1990. |
[11] |
L. Fishman, D. Simmons and M. Urbański, Diophantine approximation and the geometry of limit sets in Gromov hyperbolic metric spaces, Mem. Amer. Math. Soc., 254 (2018), v+137pp.
doi: 10.1090/memo/1215. |
[12] |
S. A. Juzvinskiĭ, Calculation of the entropy of a group-endomorphism, Sibirsk. Mat. Ž., 8 (1967), 230–239. |
[13] |
D. Y. Kleinbock and G. A. Margulis, Bounded orbits of nonquasiunipotent flows on homogeneous spaces, in Sinaĭ 's Moscow Seminar on Dynamical Systems, Amer. Math. Soc., 28 (1996), 141–172.
doi: 10.1090/trans2/171/11. |
[14] |
D. Kleinbock and T. Ly,
Badly approximable $S$-numbers and absolute Schmidt games, J. Number Theory, 164 (2016), 13-42.
doi: 10.1016/j.jnt.2015.12.014. |
[15] |
D. Kleinbock and B. Weiss,
Modified Schmidt games and Diophantine approximation with weights, Adv. Math., 223 (2010), 1276-1298.
doi: 10.1016/j.aim.2009.09.018. |
[16] |
S. Kristensen,
Badly approximable systems of linear forms over a field of formal series., J. Théor. Nombres Bordeaux, 18 (2006), 421-444.
doi: 10.5802/jtnb.552. |
[17] |
D. A. Lind and T. Ward,
Automorphisms of solenoids and $p$-adic entropy, Ergodic Theory Dynam. Systems, 8 (1988), 411-419.
doi: 10.1017/S0143385700004545. |
[18] |
C. T. McMullen,
Winning sets, quasiconformal maps and Diophantine approximation, Geom. Funct. Anal., 20 (2010), 726-740.
doi: 10.1007/s00039-010-0078-3. |
[19] |
H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory. I. Classical Theory, Cambridge University Press, Cambridge, 2007.
![]() |
[20] |
W. M. Schmidt,
On badly approximable numbers and certain games, Trans. Amer. Math. Soc., 123 (1966), 178-199.
doi: 10.1090/S0002-9947-1966-0195595-4. |
[21] |
S. Semmes, Some remarks about solenoids, 2, preprint, arXiv: 1210.0145. Google Scholar |
[22] |
S. Weil, Schmidt games and conditions on resonant sets, preprint, arXiv: 1210.1152. Google Scholar |
[23] |
A. M. Wilson,
On endomorphisms of a solenoid, Proc. Amer. Math. Soc., 55 (1976), 69-74.
doi: 10.1090/S0002-9939-1976-0390181-7. |
[1] |
Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052 |
[2] |
Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020399 |
[3] |
Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004 |
[4] |
Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267 |
[5] |
The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013 |
[6] |
Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021004 |
[7] |
Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020381 |
[8] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[9] |
João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138 |
[10] |
Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004 |
[11] |
Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129 |
[12] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[13] |
Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021012 |
[14] |
Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151 |
[15] |
Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028 |
[16] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283 |
[17] |
Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021018 |
[18] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[19] |
Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320 |
[20] |
Jesús A. Álvarez López, Ramón Barral Lijó, John Hunton, Hiraku Nozawa, John R. Parker. Chaotic Delone sets. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021016 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]