doi: 10.3934/dcds.2020353

Entropy conjugacy for Markov multi-maps of the interval

1. 

Department of Mathematics, Christopher Newport University, Newport News, VA 23606, USA

2. 

Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA

* Corresponding author: Kevin McGoff

Received  October 2019 Revised  June 2020 Published  October 2020

We consider a class $ \mathcal{F} $ of Markov multi-maps on the unit interval. Any multi-map gives rise to a space of trajectories, which is a closed, shift-invariant subset of $ [0, 1]^{\mathbb{Z}_+} $. For a multi-map in $ \mathcal{F} $, we show that the space of trajectories is (Borel) entropy conjugate to an associated shift of finite type. Additionally, we characterize the set of numbers that can be obtained as the topological entropy of a multi-map in $ \mathcal{F} $.

Citation: James P. Kelly, Kevin McGoff. Entropy conjugacy for Markov multi-maps of the interval. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020353
References:
[1]

E. Akin, The General Topology of Dynamical Systems, volume 1 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1993. doi: 10.1090/gsm/001.  Google Scholar

[2]

L. Alvin and J. P. Kelly, Topological entropy of Markov set-valued functions, to appear in Ergodic Theory and Dynamical Systems.  Google Scholar

[3]

L. Alvin and J. P. Kelly, Markov set-valued functions and their inverse limits, Topology Appl., 241 (2018), 102-114.  doi: 10.1016/j.topol.2018.03.035.  Google Scholar

[4]

W. BahsounC. Bose and A. Quas, Deterministic representation for position-dependent random maps, Discrete & Continuous Dynamical Systems - A, 22 (2008), 529-540.  doi: 10.3934/dcds.2008.22.529.  Google Scholar

[5]

I. Banič and T. Lunder, Inverse limits with generalized Markov interval functions, Bull. Malays. Math. Sci. Soc., 39 (2016), 839-848.  doi: 10.1007/s40840-015-0187-0.  Google Scholar

[6]

I. Banič and M. črepnjak, Markov pairs, quasi Markov functions and inverse limits, Houston J. Math., 44 (2018), 695-707.   Google Scholar

[7]

R. Bowen, Invariant measures for Markov maps of the interval, Comm. Math. Phys., 69 (1979), 1-17.  doi: 10.1007/BF01941319.  Google Scholar

[8]

R. Bowen, Topological entropy for noncompact sets, Transactions of the American Mathematical Society, 184 (1973), 125-136.  doi: 10.1090/S0002-9947-1973-0338317-X.  Google Scholar

[9]

J. Buzzi, Intrinsic ergodicity of smooth interval maps, Israel J. Math., 100 (1997), 125-161.  doi: 10.1007/BF02773637.  Google Scholar

[10]

J. Buzzi, Exponential decay of correlations for random lasota–yorke maps, Communications in mathematical physics, 208 (1999), 25-54.  doi: 10.1007/s002200050746.  Google Scholar

[11]

W. Cordeiro and M. J. Pacífico, Continuum-wise expansiveness and specification for set-valued functions and topological entropy, Proc. Amer. Math. Soc., 144 (2016), 4261-4271.  doi: 10.1090/proc/13168.  Google Scholar

[12]

M. črepnjak and T. Lunder, Inverse limits with countably Markov interval functions, Glas. Mat. Ser. III, 51 (2016), 491-501.  doi: 10.3336/gm.51.2.14.  Google Scholar

[13]

G. Erceg and J. Kennedy, Topological entropy on closed sets in $[0, 1]^2$, Topology Appl., 246 (2018), 106-136.  doi: 10.1016/j.topol.2018.06.015.  Google Scholar

[14]

G. Froyland, Ulam's method for random interval maps, Nonlinearity, 12 (1999), 1029-1052.  doi: 10.1088/0951-7715/12/4/318.  Google Scholar

[15]

W. T. Ingram, An Introduction to Inverse Limits with Set-Valued Functions, SpringerBriefs in Mathematics. Springer, New York, 2012. doi: 10.1007/978-1-4614-4487-9.  Google Scholar

[16]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publications Mathématiques de l'IHÉS, 51 (1980), 137–173.  Google Scholar

[17]

J. P. Kelly and T. Tennant, Topological entropy of set-valued functions, Houston J. Math., 43 (2017), 263-282.   Google Scholar

[18]

J. Kennedy and V. Nall, Dynamical properties of shift maps on inverse limits with a set valued function, Ergodic Theory Dynam. Systems, 38 (2018), 1499-1524.  doi: 10.1017/etds.2016.73.  Google Scholar

[19]

D. A. Lind, The entropies of topological markov shifts and a related class of algebraic integers, Ergodic Theory and Dynamical Systems, 4 (1984), 283-300.  doi: 10.1017/S0143385700002443.  Google Scholar

[20] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge university press, 1995.  doi: 10.1017/CBO9780511626302.  Google Scholar
[21]

R. McGehee, Attractors for closed relations on compact Hausdorff spaces, Indiana Univ. Math. J., 41 (1992), 1165-1209.  doi: 10.1512/iumj.1992.41.41058.  Google Scholar

[22]

W. Miller and E. Akin, Invariant measures for set-valued dynamical systems, Trans. Amer. Math. Soc., 351 (1999), 1203-1225.  doi: 10.1090/S0002-9947-99-02424-1.  Google Scholar

[23]

S. Pelikan, Invariant densities for random maps of the interval, Transactions of the American Mathematical Society, 281 (1984), 813-825.  doi: 10.1090/S0002-9947-1984-0722776-1.  Google Scholar

[24]

P. Walters, An Introduction to Ergodic Theory, volume 79., Springer-Verlag, New York-Berlin, 1982.  Google Scholar

show all references

References:
[1]

E. Akin, The General Topology of Dynamical Systems, volume 1 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1993. doi: 10.1090/gsm/001.  Google Scholar

[2]

L. Alvin and J. P. Kelly, Topological entropy of Markov set-valued functions, to appear in Ergodic Theory and Dynamical Systems.  Google Scholar

[3]

L. Alvin and J. P. Kelly, Markov set-valued functions and their inverse limits, Topology Appl., 241 (2018), 102-114.  doi: 10.1016/j.topol.2018.03.035.  Google Scholar

[4]

W. BahsounC. Bose and A. Quas, Deterministic representation for position-dependent random maps, Discrete & Continuous Dynamical Systems - A, 22 (2008), 529-540.  doi: 10.3934/dcds.2008.22.529.  Google Scholar

[5]

I. Banič and T. Lunder, Inverse limits with generalized Markov interval functions, Bull. Malays. Math. Sci. Soc., 39 (2016), 839-848.  doi: 10.1007/s40840-015-0187-0.  Google Scholar

[6]

I. Banič and M. črepnjak, Markov pairs, quasi Markov functions and inverse limits, Houston J. Math., 44 (2018), 695-707.   Google Scholar

[7]

R. Bowen, Invariant measures for Markov maps of the interval, Comm. Math. Phys., 69 (1979), 1-17.  doi: 10.1007/BF01941319.  Google Scholar

[8]

R. Bowen, Topological entropy for noncompact sets, Transactions of the American Mathematical Society, 184 (1973), 125-136.  doi: 10.1090/S0002-9947-1973-0338317-X.  Google Scholar

[9]

J. Buzzi, Intrinsic ergodicity of smooth interval maps, Israel J. Math., 100 (1997), 125-161.  doi: 10.1007/BF02773637.  Google Scholar

[10]

J. Buzzi, Exponential decay of correlations for random lasota–yorke maps, Communications in mathematical physics, 208 (1999), 25-54.  doi: 10.1007/s002200050746.  Google Scholar

[11]

W. Cordeiro and M. J. Pacífico, Continuum-wise expansiveness and specification for set-valued functions and topological entropy, Proc. Amer. Math. Soc., 144 (2016), 4261-4271.  doi: 10.1090/proc/13168.  Google Scholar

[12]

M. črepnjak and T. Lunder, Inverse limits with countably Markov interval functions, Glas. Mat. Ser. III, 51 (2016), 491-501.  doi: 10.3336/gm.51.2.14.  Google Scholar

[13]

G. Erceg and J. Kennedy, Topological entropy on closed sets in $[0, 1]^2$, Topology Appl., 246 (2018), 106-136.  doi: 10.1016/j.topol.2018.06.015.  Google Scholar

[14]

G. Froyland, Ulam's method for random interval maps, Nonlinearity, 12 (1999), 1029-1052.  doi: 10.1088/0951-7715/12/4/318.  Google Scholar

[15]

W. T. Ingram, An Introduction to Inverse Limits with Set-Valued Functions, SpringerBriefs in Mathematics. Springer, New York, 2012. doi: 10.1007/978-1-4614-4487-9.  Google Scholar

[16]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publications Mathématiques de l'IHÉS, 51 (1980), 137–173.  Google Scholar

[17]

J. P. Kelly and T. Tennant, Topological entropy of set-valued functions, Houston J. Math., 43 (2017), 263-282.   Google Scholar

[18]

J. Kennedy and V. Nall, Dynamical properties of shift maps on inverse limits with a set valued function, Ergodic Theory Dynam. Systems, 38 (2018), 1499-1524.  doi: 10.1017/etds.2016.73.  Google Scholar

[19]

D. A. Lind, The entropies of topological markov shifts and a related class of algebraic integers, Ergodic Theory and Dynamical Systems, 4 (1984), 283-300.  doi: 10.1017/S0143385700002443.  Google Scholar

[20] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge university press, 1995.  doi: 10.1017/CBO9780511626302.  Google Scholar
[21]

R. McGehee, Attractors for closed relations on compact Hausdorff spaces, Indiana Univ. Math. J., 41 (1992), 1165-1209.  doi: 10.1512/iumj.1992.41.41058.  Google Scholar

[22]

W. Miller and E. Akin, Invariant measures for set-valued dynamical systems, Trans. Amer. Math. Soc., 351 (1999), 1203-1225.  doi: 10.1090/S0002-9947-99-02424-1.  Google Scholar

[23]

S. Pelikan, Invariant densities for random maps of the interval, Transactions of the American Mathematical Society, 281 (1984), 813-825.  doi: 10.1090/S0002-9947-1984-0722776-1.  Google Scholar

[24]

P. Walters, An Introduction to Ergodic Theory, volume 79., Springer-Verlag, New York-Berlin, 1982.  Google Scholar

Figure 1.  The graph of a Markov multi-map and its corresponding adjacency matrix
Figure 2.  Markov multi-map from Example 9.1
Figure 3.  Markov multi-maps from Example 10.2 (left) and Example 10.3 (right)
[1]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[2]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[3]

Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317

[4]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[5]

Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021017

[6]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

[7]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[8]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[9]

Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055

[10]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[11]

Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020296

[12]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[13]

Divine Wanduku. Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021005

[14]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[15]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[16]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278

[17]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350

[18]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[19]

Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124

[20]

Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309

2019 Impact Factor: 1.338

Article outline

Figures and Tables

[Back to Top]