May  2021, 41(5): 2095-2124. doi: 10.3934/dcds.2020354

Minimal period solutions in asymptotically linear Hamiltonian system with symmetries

1. 

School of Mathematical Sciences, Sun Yat-Sen University, Guangzhou 510300, China

2. 

School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China

* Corresponding author: Duanzhi Zhang

Received  November 2019 Revised  May 2020 Published  May 2021 Early access  October 2020

Fund Project: The first author is supported by the supported by the Fundamental Research Funds for the Central Universities (34000-31610273), Sun Yat-Sen University. The second author is supported by the NSF of China (17190271, 11422103, 11771341) and Nankai University

In this paper, applying the Maslov-type index theory for periodic orbits and brake orbits, we study the minimal period problems in asymptotically linear Hamiltonian systems with different symmetries. For the asymptotically linear semipositive even Hamiltonian systems, we prove that for any given $ T>0 $, there exists a central symmetric periodic solution with minimal period $ T $. Moreover, if the Hamiltonian systems are also reversible, we prove the existence of a central symmetric brake orbit with minimal period being either $ T $ or $ T/3 $. Also we give some other lower bound estimations for brake orbits case.

Citation: Zhiping Fan, Duanzhi Zhang. Minimal period solutions in asymptotically linear Hamiltonian system with symmetries. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2095-2124. doi: 10.3934/dcds.2020354
References:
[1]

H. Amann and E. Zehnder, Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4), 7 (1980), 539-603. 

[2]

H. Amann and E. Zehnder, Periodic solutions of asymptotically linear Hamiltonian systems, Manuscripta Math, 32 (1980), 149-189.  doi: 10.1007/BF01298187.

[3]

A. Ambrosetti and G. Mancini, Solutions of minimal period for a class of convex Hamiltonian systems, Math. Ann, 255 (1981), 405-421.  doi: 10.1007/BF01450713.

[4]

S. E. CappelR. Lee and E. Y. Miller, On the maslov index, Comm. Pure Appl. Math, 47 (1994), 121-186.  doi: 10.1002/cpa.3160470202.

[5]

K. Chang, Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure Appl. Math, 34 (1981), 693-712.  doi: 10.1002/cpa.3160340503.

[6]

K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhauser, Basel, 1993. doi: 10.1007/978-1-4612-0385-8.

[7]

K. Chang, J. Liu and M. Liu, Nontrivial periodic solutions for strong resonance Hamiltonian systems, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 14 (1997), 103–117. doi: 10.1016/S0294-1449(97)80150-3.

[8]

F. Clark and I. Ekeland, Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math, 33 (1980), 103-116.  doi: 10.1002/cpa.3160330202.

[9]

D. Dong and Y. Long, The iteration theory of the Maslov-type index theory with applications to nonlinear Hamiltonian systems, Trans. Amer. Math. Soc, 349 (1997), 2619-2661.  doi: 10.1090/S0002-9947-97-01718-2.

[10]

J. J. Duistermaat, On the Morse index in variational calculus, Adv. in Math, 21 (1976), 173-195.  doi: 10.1016/0001-8708(76)90074-8.

[11]

I. Ekeland and H. Hofer, Periodic solutions with prescribed minimal period for convex autonomous hamiltonian systems, Invent. Math, 81 (1985), 155-188.  doi: 10.1007/BF01388776.

[12]

Z. Fan and D. Zhang, Multiple subharmonic solutions in Hamiltonian system with symmetries, submitted.

[13]

G. Fei and Q. Qiu, Minimal period solutions of nonlinear Hamiltonian systems, Nonlinear Anal, 27 (1996), 821-839.  doi: 10.1016/0362-546X(95)00077-9.

[14]

G. Fei and Q. Qiu, Periodic solutions of asymptotically linear Hamiltonian systems, Chinese Ann. of Math. Ser. B, 18 (1997), 359-372. 

[15]

N. Ghoussoub, Location, multiplicity and Morse indices of min-max critical points, J Reine Angew Math, 417 (1991), 27-76.  doi: 10.1515/crll.1991.417.27.

[16]

L. Hörmander, Symplectic classification of quadratic forms, and general Mehler formulas, Math. Z, 219 (1995), 413-449.  doi: 10.1007/BF02572374.

[17]

S. Li and J. Liu, Morse theory and asymptotic linear Hamiltonian system, J. Diff. Equ, 78 (1989), 53-73.  doi: 10.1016/0022-0396(89)90075-2.

[18]

C. Liu, Asymptotically linear Hamiltonian systems with Lagrangian boundary conditions, Pacific J. Math, 232 (2007), 233-255.  doi: 10.2140/pjm.2007.232.233.

[19]

C. Liu, Maslov-type index theory for symplectic paths with Lagrangian boundary conditions, Adv. Nonlinear Stud, 7 (2007), 131-161.  doi: 10.1515/ans-2007-0107.

[20]

C. Liu, Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems, Discrete Contin. Dyn. Syst, 27 (2010), 337-355.  doi: 10.3934/dcds.2010.27.337.

[21]

C. Liu and D. Zhang, Iteration theory of $L$-index and multiplicity of brake orbits, J. Diff. Equ, 257 (2014), 1194–1245, arXiv: 0908.0021. doi: 10.1016/j.jde.2014.05.006.

[22]

C. Liu and D. Zhang, Seifert conjecture in the even convex case, Comm. Pure Appl. Math, 67 (2014), 1563-1604.  doi: 10.1002/cpa.21525.

[23]

C. Liu and B. Zhou, Minimal $P$-symmetric period problem of first-order autonomous Hamiltonian systems, Front. Math. China, 12 (2017), 641-654.  doi: 10.1007/s11464-017-0627-2.

[24]

Y. Long, Maslov-type index, degenerate critical points, and asymptotically linear Hamiltonian systems, Sci. China Ser. A, 33 (1990), 1409-1419. 

[25]

Y. Long, The minimal period problem of classical Hamiltonian systems with even potentials, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 10 (1993), 605–626. doi: 10.1016/S0294-1449(16)30199-8.

[26]

Y. Long, Index Theory for Symplectic Paths with Applictions, Progress in Mathematics. 2002. doi: 10.1007/978-3-0348-8175-3.

[27]

Y. LongD. Zhang and C. Zhu, Multiple brake orbits in bounded convex symmetric domains, Adv. Math, 203 (2006), 568-635.  doi: 10.1016/j.aim.2005.05.005.

[28]

J. Robin and D. Salamon, The Maslov index for paths, Topology, 32 (1993), 827-844.  doi: 10.1016/0040-9383(93)90052-W.

[29]

P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 1986. doi: 10.1090/cbms/065.

[30]

D. Zhang, Relative Morse index and multiple brake orbits of asymptotically linear Hamiltonian systems in the presence of symmetries, J. Differential Equations, 245 (2008), 925-938.  doi: 10.1016/j.jde.2008.04.020.

[31]

D. Zhang, Symmetric period solutions with prescribed minimal period for even autonomous semipositive Hamiltonian systems, Sci. Chin. Math, 57 (2014), 81-96.  doi: 10.1007/s11425-013-4598-9.

[32]

D. Zhang, Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems, Discrete Contin. Dyn. syst., 35 (2015), 2227-2272.  doi: 10.3934/dcds.2015.35.2227.

show all references

References:
[1]

H. Amann and E. Zehnder, Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4), 7 (1980), 539-603. 

[2]

H. Amann and E. Zehnder, Periodic solutions of asymptotically linear Hamiltonian systems, Manuscripta Math, 32 (1980), 149-189.  doi: 10.1007/BF01298187.

[3]

A. Ambrosetti and G. Mancini, Solutions of minimal period for a class of convex Hamiltonian systems, Math. Ann, 255 (1981), 405-421.  doi: 10.1007/BF01450713.

[4]

S. E. CappelR. Lee and E. Y. Miller, On the maslov index, Comm. Pure Appl. Math, 47 (1994), 121-186.  doi: 10.1002/cpa.3160470202.

[5]

K. Chang, Solutions of asymptotically linear operator equations via Morse theory, Comm. Pure Appl. Math, 34 (1981), 693-712.  doi: 10.1002/cpa.3160340503.

[6]

K. C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhauser, Basel, 1993. doi: 10.1007/978-1-4612-0385-8.

[7]

K. Chang, J. Liu and M. Liu, Nontrivial periodic solutions for strong resonance Hamiltonian systems, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 14 (1997), 103–117. doi: 10.1016/S0294-1449(97)80150-3.

[8]

F. Clark and I. Ekeland, Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math, 33 (1980), 103-116.  doi: 10.1002/cpa.3160330202.

[9]

D. Dong and Y. Long, The iteration theory of the Maslov-type index theory with applications to nonlinear Hamiltonian systems, Trans. Amer. Math. Soc, 349 (1997), 2619-2661.  doi: 10.1090/S0002-9947-97-01718-2.

[10]

J. J. Duistermaat, On the Morse index in variational calculus, Adv. in Math, 21 (1976), 173-195.  doi: 10.1016/0001-8708(76)90074-8.

[11]

I. Ekeland and H. Hofer, Periodic solutions with prescribed minimal period for convex autonomous hamiltonian systems, Invent. Math, 81 (1985), 155-188.  doi: 10.1007/BF01388776.

[12]

Z. Fan and D. Zhang, Multiple subharmonic solutions in Hamiltonian system with symmetries, submitted.

[13]

G. Fei and Q. Qiu, Minimal period solutions of nonlinear Hamiltonian systems, Nonlinear Anal, 27 (1996), 821-839.  doi: 10.1016/0362-546X(95)00077-9.

[14]

G. Fei and Q. Qiu, Periodic solutions of asymptotically linear Hamiltonian systems, Chinese Ann. of Math. Ser. B, 18 (1997), 359-372. 

[15]

N. Ghoussoub, Location, multiplicity and Morse indices of min-max critical points, J Reine Angew Math, 417 (1991), 27-76.  doi: 10.1515/crll.1991.417.27.

[16]

L. Hörmander, Symplectic classification of quadratic forms, and general Mehler formulas, Math. Z, 219 (1995), 413-449.  doi: 10.1007/BF02572374.

[17]

S. Li and J. Liu, Morse theory and asymptotic linear Hamiltonian system, J. Diff. Equ, 78 (1989), 53-73.  doi: 10.1016/0022-0396(89)90075-2.

[18]

C. Liu, Asymptotically linear Hamiltonian systems with Lagrangian boundary conditions, Pacific J. Math, 232 (2007), 233-255.  doi: 10.2140/pjm.2007.232.233.

[19]

C. Liu, Maslov-type index theory for symplectic paths with Lagrangian boundary conditions, Adv. Nonlinear Stud, 7 (2007), 131-161.  doi: 10.1515/ans-2007-0107.

[20]

C. Liu, Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems, Discrete Contin. Dyn. Syst, 27 (2010), 337-355.  doi: 10.3934/dcds.2010.27.337.

[21]

C. Liu and D. Zhang, Iteration theory of $L$-index and multiplicity of brake orbits, J. Diff. Equ, 257 (2014), 1194–1245, arXiv: 0908.0021. doi: 10.1016/j.jde.2014.05.006.

[22]

C. Liu and D. Zhang, Seifert conjecture in the even convex case, Comm. Pure Appl. Math, 67 (2014), 1563-1604.  doi: 10.1002/cpa.21525.

[23]

C. Liu and B. Zhou, Minimal $P$-symmetric period problem of first-order autonomous Hamiltonian systems, Front. Math. China, 12 (2017), 641-654.  doi: 10.1007/s11464-017-0627-2.

[24]

Y. Long, Maslov-type index, degenerate critical points, and asymptotically linear Hamiltonian systems, Sci. China Ser. A, 33 (1990), 1409-1419. 

[25]

Y. Long, The minimal period problem of classical Hamiltonian systems with even potentials, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 10 (1993), 605–626. doi: 10.1016/S0294-1449(16)30199-8.

[26]

Y. Long, Index Theory for Symplectic Paths with Applictions, Progress in Mathematics. 2002. doi: 10.1007/978-3-0348-8175-3.

[27]

Y. LongD. Zhang and C. Zhu, Multiple brake orbits in bounded convex symmetric domains, Adv. Math, 203 (2006), 568-635.  doi: 10.1016/j.aim.2005.05.005.

[28]

J. Robin and D. Salamon, The Maslov index for paths, Topology, 32 (1993), 827-844.  doi: 10.1016/0040-9383(93)90052-W.

[29]

P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 1986. doi: 10.1090/cbms/065.

[30]

D. Zhang, Relative Morse index and multiple brake orbits of asymptotically linear Hamiltonian systems in the presence of symmetries, J. Differential Equations, 245 (2008), 925-938.  doi: 10.1016/j.jde.2008.04.020.

[31]

D. Zhang, Symmetric period solutions with prescribed minimal period for even autonomous semipositive Hamiltonian systems, Sci. Chin. Math, 57 (2014), 81-96.  doi: 10.1007/s11425-013-4598-9.

[32]

D. Zhang, Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems, Discrete Contin. Dyn. syst., 35 (2015), 2227-2272.  doi: 10.3934/dcds.2015.35.2227.

[1]

Chungen Liu. Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 337-355. doi: 10.3934/dcds.2010.27.337

[2]

Duanzhi Zhang. Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2227-2272. doi: 10.3934/dcds.2015.35.2227

[3]

Xiaorui Li, Duanzhi Zhang. Minimal P-cyclic periodic brake orbits in Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2022, 42 (11) : 5591-5611. doi: 10.3934/dcds.2022115

[4]

B. Buffoni, F. Giannoni. Brake periodic orbits of prescribed Hamiltonian for indefinite Lagrangian systems. Discrete and Continuous Dynamical Systems, 1995, 1 (2) : 217-222. doi: 10.3934/dcds.1995.1.217

[5]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Homoclinic orbits for a class of asymptotically quadratic Hamiltonian systems. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2855-2878. doi: 10.3934/cpaa.2019128

[6]

Peter Howard, Alim Sukhtayev. The Maslov and Morse indices for Sturm-Liouville systems on the half-line. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 983-1012. doi: 10.3934/dcds.2020068

[7]

Juhong Kuang, Weiyi Chen, Zhiming Guo. Periodic solutions with prescribed minimal period for second order even Hamiltonian systems. Communications on Pure and Applied Analysis, 2022, 21 (1) : 47-59. doi: 10.3934/cpaa.2021166

[8]

Jun Wang, Junxiang Xu, Fubao Zhang. Homoclinic orbits for a class of Hamiltonian systems with superquadratic or asymptotically quadratic potentials. Communications on Pure and Applied Analysis, 2011, 10 (1) : 269-286. doi: 10.3934/cpaa.2011.10.269

[9]

Roberta Fabbri, Carmen Núñez, Ana M. Sanz. A perturbation theorem for linear Hamiltonian systems with bounded orbits. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 623-635. doi: 10.3934/dcds.2005.13.623

[10]

Shiwang Ma. Nontrivial periodic solutions for asymptotically linear hamiltonian systems at resonance. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2361-2380. doi: 10.3934/cpaa.2013.12.2361

[11]

Paolo Gidoni, Alessandro Margheri. Lower bound on the number of periodic solutions for asymptotically linear planar Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 585-606. doi: 10.3934/dcds.2019024

[12]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[13]

Qinqin Zhang. Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1929-1940. doi: 10.3934/cpaa.2015.14.1929

[14]

Yavdat Il'yasov, Nadir Sari. Solutions of minimal period for a Hamiltonian system with a changing sign potential. Communications on Pure and Applied Analysis, 2005, 4 (1) : 175-185. doi: 10.3934/cpaa.2005.4.175

[15]

K. Tintarev. Critical values and minimal periods for autonomous Hamiltonian systems. Discrete and Continuous Dynamical Systems, 1995, 1 (3) : 389-400. doi: 10.3934/dcds.1995.1.389

[16]

Fei Liu, Jaume Llibre, Xiang Zhang. Heteroclinic orbits for a class of Hamiltonian systems on Riemannian manifolds. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1097-1111. doi: 10.3934/dcds.2011.29.1097

[17]

Oskar A. Sultanov. Bifurcations in asymptotically autonomous Hamiltonian systems under oscillatory perturbations. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5943-5978. doi: 10.3934/dcds.2021102

[18]

Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Linear type centers of polynomial Hamiltonian systems with nonlinearities of degree 4 symmetric with respect to the y-axis. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 887-912. doi: 10.3934/dcdsb.2018047

[19]

Pablo G. Barrientos, Abbas Fakhari, Aliasghar Sarizadeh. Density of fiberwise orbits in minimal iterated function systems on the circle. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3341-3352. doi: 10.3934/dcds.2014.34.3341

[20]

Addolorata Salvatore. Multiple homoclinic orbits for a class of second order perturbed Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 778-787. doi: 10.3934/proc.2003.2003.778

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (288)
  • HTML views (192)
  • Cited by (0)

Other articles
by authors

[Back to Top]