Assume that $ M $ is a CR compact manifold without boundary and CR Yamabe invariant $ \mathcal{Y}(M) $ is positive. Here, we devote to study a class of sharp Hardy-Littlewood-Sobolev inequality as follows
$ \begin{equation*} \Bigl| \int_M\int_M [G_\xi^\theta(\eta)]^{\frac{Q-\alpha}{Q-2}} f(\xi) g(\eta) dV_\theta(\xi) dV_\theta(\eta) \Bigr| \leq \mathcal{Y}_\alpha(M) \|f\|_{L^{\frac{2Q}{Q+\alpha}}(M)} \|g\|_{L^{\frac{2Q}{Q+\alpha}}(M)}, \end{equation*} $
where $ G_\xi^\theta(\eta) $ is the Green function of CR conformal Laplacian $ \mathcal{L_\theta} = b_n\Delta_b+R $, $ \mathcal{Y}_\alpha(M) $ is sharp constant, $ \Delta_b $ is Sublaplacian and $ R $ is Tanaka-Webster scalar curvature. For the diagonal case $ f = g $, we prove that $ \mathcal{Y}_\alpha(M)\geq \mathcal{Y}_\alpha(\mathbb{S}^{2n+1}) $ (the unit complex sphere of $ \mathbb{C}^{n+1} $) and $ \mathcal{Y}_\alpha(M) $ can be attained if $ \mathcal{Y}_\alpha(M)> \mathcal{Y}_\alpha(\mathbb{S}^{2n+1}) $. So, we got the existence of the Euler-Lagrange equations
$ \begin{equation} \varphi^{\frac{Q-\alpha}{Q+\alpha}}(\xi) = \int_M [G_\xi^\theta(\eta)]^{\frac{Q-\alpha}{Q-2}}\varphi(\eta)\ dV_\theta, \quad 0<\alpha<Q. ~~~(1) \end{equation} $
Moreover, we prove that the solution of (1) is $ \Gamma^\alpha(M) $. Particular, if $ \alpha = 2 $, the previous extremal problem is closely related to the CR Yamabe problem. Hence, we can study the CR Yamabe problem by integral equations.
Citation: |
[1] |
A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the togology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.
doi: 10.1002/cpa.3160410302.![]() ![]() ![]() |
[2] |
T. P. Branson, L. Fontana and C. Morpurgo, Moser-Trudinger and Beckner-Onofri's inequalities on the CR sphere, Annals of Mathematics, 177 (2013), 1-52.
doi: 10.4007/annals.2013.177.1.1.![]() ![]() ![]() |
[3] |
H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.
doi: 10.1002/cpa.3160360405.![]() ![]() ![]() |
[4] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116.![]() ![]() ![]() |
[5] |
J.-H. Cheng, A. Malchiodi and P. Yang, A positive mass theorem in three dimensional Cauchy-Riemann geometry, Advances in Mathematics, 308 (2017), 276-347.
doi: 10.1016/j.aim.2016.12.012.![]() ![]() ![]() |
[6] |
W. S. Cohn and G. Lu, Sharp constants for Moser-Trudinger inequalities on spheres in complex space $\mathbb{C}^n$, Comm. Pure Appl. Math., 57 (2004), 1458-1493.
doi: 10.1002/cpa.20043.![]() ![]() ![]() |
[7] |
J. Dou and M. Zhu, Nonlinear integral equations on bounded domains, J. Funct. Anal., 277 (2019), 111-134.
doi: 10.1016/j.jfa.2018.05.020.![]() ![]() ![]() |
[8] |
S. Dragomir and G. Tomassini, Differential Geometry and Analysis on CR Manifolds, Progress in Mathematics, 246. Birkhäuser Boston, Inc., Boston, MA, 2006.
![]() ![]() |
[9] |
G. B. Folland, A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc., 79 (1973), 373-376.
doi: 10.1090/S0002-9904-1973-13171-4.![]() ![]() ![]() |
[10] |
G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Arkiv för Matematik, 13 (1975), 161-207.
doi: 10.1007/BF02386204.![]() ![]() ![]() |
[11] |
G. B. Folland and E. M. Stein, Estimates for the $\bar{\partial}_b$ complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27 (1974), 429-522.
doi: 10.1002/cpa.3160270403.![]() ![]() ![]() |
[12] |
R. L. Frank and E. H. Lieb, Sharp constants in several inequalities on the Heisenberg group, Annals of Mathematics, 176 (2012), 349-381.
doi: 10.4007/annals.2012.176.1.6.![]() ![]() ![]() |
[13] |
N. Gamara, The CR Yamabe conjecture the case $n = 1$, J. Eur. Math. Soc. (JEMS), 3 (2001), 105-137.
doi: 10.1007/PL00011303.![]() ![]() ![]() |
[14] |
N. Gamara and R. Yacoub, CR Yamabe conjecture — the conformally flat case, Pacific Journal of Mathematics, 201 (2001), 121-175.
doi: 10.2140/pjm.2001.201.121.![]() ![]() ![]() |
[15] |
M. Gluck and M. Zhu, An extension operator on bounded domains and applications, Calc. Var. PDE, 58 (2019), 27 pp.
doi: 10.1007/s00526-019-1513-4.![]() ![]() ![]() |
[16] |
Y. Han, An integral type Brezis-Nirenberg problem on the Heisenberg group, J. Differential Equations, 269 (2020), 4544-4565.
doi: 10.1016/j.jde.2020.03.032.![]() ![]() ![]() |
[17] |
Y. Han and M. Zhu, Hardy-Littlewood-Sobolev inequalities on compact Riemannian manifolds and applications, J. Differentical Equations, 260 (2016), 1-25.
doi: 10.1016/j.jde.2015.06.032.![]() ![]() ![]() |
[18] |
L. Hörmander, Hypoelliptic second order differential equations, Acta Mathematica, 119 (1967), 147-171.
doi: 10.1007/BF02392081.![]() ![]() ![]() |
[19] |
D. Jerison and J. M. Lee, A subelliptic, nonlinear eigenvalue problem and scalar curvature on CR manifolds, Microlocal Analysis, Contemp. Math., Amer. Math. Soc., Providence, RI, 27 (1984), 57-63.
doi: 10.1090/conm/027/741039.![]() ![]() ![]() |
[20] |
D. Jerison and J. M. Lee, The Yamabe problem on CR manifolds, J. Differential Geom., 25 (1987), 167-197.
doi: 10.4310/jdg/1214440849.![]() ![]() ![]() |
[21] |
D. Jerison and J. M. Lee, Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Amer. Math. Soc., 1 (1988), 1-13.
doi: 10.1090/S0894-0347-1988-0924699-9.![]() ![]() ![]() |
[22] |
D. Jerison and J. M. Lee, Intrinsic CR normal coordinates and the CR Yamabe problem, J. Differential Geom., 29 (1989), 303-343.
doi: 10.4310/jdg/1214442877.![]() ![]() ![]() |
[23] |
J. M. Lee, The Fefferman metric and pseudohermitian invariants, Trans. Amer. Math. Soc., 296 (1986), 411-429.
doi: 10.2307/2000582.![]() ![]() ![]() |
[24] |
J. M. Lee, Pseudo-Einstein structres on CR manifolds, Amer. J. Math., 110 (1988), 157-178.
doi: 10.2307/2374543.![]() ![]() ![]() |
[25] |
J. M. Lee and T. H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.), 17 (1987), 37-91.
doi: 10.1090/S0273-0979-1987-15514-5.![]() ![]() ![]() |
[26] |
Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153-180.
![]() ![]() |
[27] |
S.-Y. Li, D. N. Son and X. Wang, A new characterization of the CR sphere and the sharp eigenvalue estimate for the Kohn Laplacian, Advances in Math., 281 (2015), 1285-1305.
doi: 10.1016/j.aim.2015.06.008.![]() ![]() ![]() |
[28] |
S.-Y. Li and X. Wang, An Obata-type theorem in CR geometry, J. Diff. Geom., 95 (2013), 483-502.
doi: 10.4310/jdg/1381931736.![]() ![]() ![]() |
[29] |
Y. Y. Li and M. Zhu, Sharp Sobolev inequalities involving boundary terms, Geom. Funct. Anal., 8 (1998), 59-87.
doi: 10.1007/s000390050048.![]() ![]() ![]() |
[30] |
Y. Li and M. Zhu, Sharp Sobolev trace inequalities on Riemannian manifolds with boundaries, Comm. Pure Appl. Math., 50 (1997), 427-465.
doi: 10.1002/(SICI)1097-0312(199705)50:5<449::AID-CPA2>3.0.CO;2-9.![]() ![]() ![]() |
[31] |
Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417.
doi: 10.1215/S0012-7094-95-08016-8.![]() ![]() ![]() |
[32] |
E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374.
doi: 10.2307/2007032.![]() ![]() ![]() |
[33] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, 30. Princeton University Press, Princeton, N.J. 1970.
![]() ![]() |
[34] |
X. Wang, Some recent results in CR geometry, Tsinghua lectures in mathematics, Adv. Lect. Math. (ALM), Int. Press, Somerville, MA, 45 (2019), 469-484.
![]() ![]() |
[35] |
X. Wang, On a remarkable formula of Jerison and Lee in CR geometry, Math. Res. Lett., 22 (2015), 279-299.
doi: 10.4310/MRL.2015.v22.n1.a14.![]() ![]() ![]() |
[36] |
M. Zhu, Prescribing integral curvature equation, Differential and Integral Equations, 29 (2016), 889-904.
![]() ![]() |