Advanced Search
Article Contents
Article Contents

Integral equations on compact CR manifolds

Abstract Full Text(HTML) Related Papers Cited by
  • Assume that $ M $ is a CR compact manifold without boundary and CR Yamabe invariant $ \mathcal{Y}(M) $ is positive. Here, we devote to study a class of sharp Hardy-Littlewood-Sobolev inequality as follows

    $ \begin{equation*} \Bigl| \int_M\int_M [G_\xi^\theta(\eta)]^{\frac{Q-\alpha}{Q-2}} f(\xi) g(\eta) dV_\theta(\xi) dV_\theta(\eta) \Bigr| \leq \mathcal{Y}_\alpha(M) \|f\|_{L^{\frac{2Q}{Q+\alpha}}(M)} \|g\|_{L^{\frac{2Q}{Q+\alpha}}(M)}, \end{equation*} $

    where $ G_\xi^\theta(\eta) $ is the Green function of CR conformal Laplacian $ \mathcal{L_\theta} = b_n\Delta_b+R $, $ \mathcal{Y}_\alpha(M) $ is sharp constant, $ \Delta_b $ is Sublaplacian and $ R $ is Tanaka-Webster scalar curvature. For the diagonal case $ f = g $, we prove that $ \mathcal{Y}_\alpha(M)\geq \mathcal{Y}_\alpha(\mathbb{S}^{2n+1}) $ (the unit complex sphere of $ \mathbb{C}^{n+1} $) and $ \mathcal{Y}_\alpha(M) $ can be attained if $ \mathcal{Y}_\alpha(M)> \mathcal{Y}_\alpha(\mathbb{S}^{2n+1}) $. So, we got the existence of the Euler-Lagrange equations

    $ \begin{equation} \varphi^{\frac{Q-\alpha}{Q+\alpha}}(\xi) = \int_M [G_\xi^\theta(\eta)]^{\frac{Q-\alpha}{Q-2}}\varphi(\eta)\ dV_\theta, \quad 0<\alpha<Q. ~~~(1) \end{equation} $

    Moreover, we prove that the solution of (1) is $ \Gamma^\alpha(M) $. Particular, if $ \alpha = 2 $, the previous extremal problem is closely related to the CR Yamabe problem. Hence, we can study the CR Yamabe problem by integral equations.

    Mathematics Subject Classification: Primary: 45G05; Secondary: 32V20.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the togology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.  doi: 10.1002/cpa.3160410302.
    [2] T. P. BransonL. Fontana and C. Morpurgo, Moser-Trudinger and Beckner-Onofri's inequalities on the CR sphere, Annals of Mathematics, 177 (2013), 1-52.  doi: 10.4007/annals.2013.177.1.1.
    [3] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.
    [4] W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.
    [5] J.-H. ChengA. Malchiodi and P. Yang, A positive mass theorem in three dimensional Cauchy-Riemann geometry, Advances in Mathematics, 308 (2017), 276-347.  doi: 10.1016/j.aim.2016.12.012.
    [6] W. S. Cohn and G. Lu, Sharp constants for Moser-Trudinger inequalities on spheres in complex space $\mathbb{C}^n$, Comm. Pure Appl. Math., 57 (2004), 1458-1493.  doi: 10.1002/cpa.20043.
    [7] J. Dou and M. Zhu, Nonlinear integral equations on bounded domains, J. Funct. Anal., 277 (2019), 111-134.  doi: 10.1016/j.jfa.2018.05.020.
    [8] S. Dragomir and G. Tomassini, Differential Geometry and Analysis on CR Manifolds, Progress in Mathematics, 246. Birkhäuser Boston, Inc., Boston, MA, 2006.
    [9] G. B. Folland, A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc., 79 (1973), 373-376.  doi: 10.1090/S0002-9904-1973-13171-4.
    [10] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Arkiv för Matematik, 13 (1975), 161-207.  doi: 10.1007/BF02386204.
    [11] G. B. Folland and E. M. Stein, Estimates for the $\bar{\partial}_b$ complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27 (1974), 429-522.  doi: 10.1002/cpa.3160270403.
    [12] R. L. Frank and E. H. Lieb, Sharp constants in several inequalities on the Heisenberg group, Annals of Mathematics, 176 (2012), 349-381.  doi: 10.4007/annals.2012.176.1.6.
    [13] N. Gamara, The CR Yamabe conjecture the case $n = 1$, J. Eur. Math. Soc. (JEMS), 3 (2001), 105-137.  doi: 10.1007/PL00011303.
    [14] N. Gamara and R. Yacoub, CR Yamabe conjecture — the conformally flat case, Pacific Journal of Mathematics, 201 (2001), 121-175.  doi: 10.2140/pjm.2001.201.121.
    [15] M. Gluck and M. Zhu, An extension operator on bounded domains and applications, Calc. Var. PDE, 58 (2019), 27 pp. doi: 10.1007/s00526-019-1513-4.
    [16] Y. Han, An integral type Brezis-Nirenberg problem on the Heisenberg group, J. Differential Equations, 269 (2020), 4544-4565.  doi: 10.1016/j.jde.2020.03.032.
    [17] Y. Han and M. Zhu, Hardy-Littlewood-Sobolev inequalities on compact Riemannian manifolds and applications, J. Differentical Equations, 260 (2016), 1-25.  doi: 10.1016/j.jde.2015.06.032.
    [18] L. Hörmander, Hypoelliptic second order differential equations, Acta Mathematica, 119 (1967), 147-171.  doi: 10.1007/BF02392081.
    [19] D. Jerison and J. M. Lee, A subelliptic, nonlinear eigenvalue problem and scalar curvature on CR manifolds, Microlocal Analysis, Contemp. Math., Amer. Math. Soc., Providence, RI, 27 (1984), 57-63.  doi: 10.1090/conm/027/741039.
    [20] D. Jerison and J. M. Lee, The Yamabe problem on CR manifolds, J. Differential Geom., 25 (1987), 167-197.  doi: 10.4310/jdg/1214440849.
    [21] D. Jerison and J. M. Lee, Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Amer. Math. Soc., 1 (1988), 1-13.  doi: 10.1090/S0894-0347-1988-0924699-9.
    [22] D. Jerison and J. M. Lee, Intrinsic CR normal coordinates and the CR Yamabe problem, J. Differential Geom., 29 (1989), 303-343.  doi: 10.4310/jdg/1214442877.
    [23] J. M. Lee, The Fefferman metric and pseudohermitian invariants, Trans. Amer. Math. Soc., 296 (1986), 411-429.  doi: 10.2307/2000582.
    [24] J. M. Lee, Pseudo-Einstein structres on CR manifolds, Amer. J. Math., 110 (1988), 157-178.  doi: 10.2307/2374543.
    [25] J. M. Lee and T. H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.), 17 (1987), 37-91.  doi: 10.1090/S0273-0979-1987-15514-5.
    [26] Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153-180. 
    [27] S.-Y. LiD. N. Son and X. Wang, A new characterization of the CR sphere and the sharp eigenvalue estimate for the Kohn Laplacian, Advances in Math., 281 (2015), 1285-1305.  doi: 10.1016/j.aim.2015.06.008.
    [28] S.-Y. Li and X. Wang, An Obata-type theorem in CR geometry, J. Diff. Geom., 95 (2013), 483-502.  doi: 10.4310/jdg/1381931736.
    [29] Y. Y. Li and M. Zhu, Sharp Sobolev inequalities involving boundary terms, Geom. Funct. Anal., 8 (1998), 59-87.  doi: 10.1007/s000390050048.
    [30] Y. Li and M. Zhu, Sharp Sobolev trace inequalities on Riemannian manifolds with boundaries, Comm. Pure Appl. Math., 50 (1997), 427-465.  doi: 10.1002/(SICI)1097-0312(199705)50:5<449::AID-CPA2>3.0.CO;2-9.
    [31] Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417.  doi: 10.1215/S0012-7094-95-08016-8.
    [32] E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374.  doi: 10.2307/2007032.
    [33] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, 30. Princeton University Press, Princeton, N.J. 1970.
    [34] X. Wang, Some recent results in CR geometry, Tsinghua lectures in mathematics, Adv. Lect. Math. (ALM), Int. Press, Somerville, MA, 45 (2019), 469-484. 
    [35] X. Wang, On a remarkable formula of Jerison and Lee in CR geometry, Math. Res. Lett., 22 (2015), 279-299.  doi: 10.4310/MRL.2015.v22.n1.a14.
    [36] M. Zhu, Prescribing integral curvature equation, Differential and Integral Equations, 29 (2016), 889-904. 
  • 加载中

Article Metrics

HTML views(415) PDF downloads(258) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint