\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Liouville type theorems for fractional and higher-order fractional systems

D. Cao was supported by NNSF of China (No.11831009) and Chinese Academy of Sciences (No.QYZDJ-SSW-SYS021)

Abstract Full Text(HTML) Figure(1) Related Papers Cited by
  • In this paper, we first establish decay estimates for the fractional and higher-order fractional Hénon-Lane-Emden systems by using a nonlocal average and integral estimates, which deduce a result of non-existence. Next, we apply the method of scaling spheres introduced in [16] to derive a Liouville type theorem. We also construct an interesting example on super $ \frac{\alpha}{2} $-harmonic functions (Proposition 1.2).

    Mathematics Subject Classification: Primary: 35J61; Secondary: 35B53, 35C15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Spherical coordinate system

  • [1] A. Biswas, Liouville type results for systems of equations involving fractional Laplacian in exterior domains, Nonlinearity, 32 (2019), 2246-2268.  doi: 10.1088/1361-6544/ab091b.
    [2] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. PDE., 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.
    [3] D. Cao and W. Dai, Classification of nonnegative solutions to a bi-harmonic equation with Hartree type nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 149 (2019), 979-994.  doi: 10.1017/prm.2018.67.
    [4] D. Cao, W. Dai and G. Qin, Super poly-harmonic properties, Liouville theorems and classification of nonnegative solutions to equations involving higher-order fractional Laplacians, preprint, arXiv: 1905.04300.
    [5] W. Chen, W. Dai and G. Qin, Liouville type theorems, a priori estimates and existence of solutions for critical order Hardy-Hénon equations in $\mathbb{R}^n$, preprint, arXiv: 1808.06609.
    [6] W. ChenY. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015), 167-198.  doi: 10.1016/j.aim.2014.12.013.
    [7] W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.  doi: 10.1215/S0012-7094-91-06325-8.
    [8] W. Chen and C. Li, Super polyharmonic property of solutions for PDE systems and its applications, Comm. Pure Appl. Anal., 12 (2013), 2497-2514.  doi: 10.3934/cpaa.2013.12.2497.
    [9] W. Chen, Y. Li and P. Ma, The Fractional Laplacian, World Scientific Publishing Co. Pte. Ltd., 2020,344 pp, https://doi.org/10.1142/10550.
    [10] W. ChenC. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.
    [11] W. DaiY. FangJ. HuangY. Qin and B. Wang, Regularity and classification of solutions to static Hartree equations involving fractional Laplacians, Discrete Contin. Dyn. Syst. - A, 39 (2019), 1389-1403.  doi: 10.3934/dcds.2018117.
    [12] W. Dai and Z. Liu, Classification of positive solutions to a system of Hardy-Sobolev type equations, Acta Mathematica Scientia, 37 (2017), 1415-1436.  doi: 10.1016/S0252-9602(17)30082-6.
    [13] W. Dai and Z. Liu, Classification of nonnegative solutions to static Schrödinger-Hartree and Schrödinger-Maxwell equations with combined nonlinearities, Calc. Var. Partial Differential Equations, 58 (2019), Paper No. 156, 24 pp. doi: 10.1007/s00526-019-1595-z.
    [14] W. Dai, Z. Liu and G. Qin, Classification of nonnegative solutions to static Schrödinger-Hartree-Maxwell type equations, preprint, arXiv: 1909.00492.
    [15] W. Dai and G. Qin, Classification of nonnegative classical solutions to third-order equations, Adv. Math., 328 (2018), 822-857.  doi: 10.1016/j.aim.2018.02.016.
    [16] W. Dai and G. Qin, Liouville type theorems for fractional and higher order Hénon-Hardy type equations via the method of scaling spheres, preprint, arXiv: 1810.02752.
    [17] W. Dai and G. Qin, Liouville type theorem for critical order Hénon-Lane-Emden type equations on a half space and its applications, preprint, arXiv: 1811.00881.
    [18] W. Dai and G. Qin, Liouville type theorems for elliptic equations with Dirichlet conditions in exterior domains, Journal of Differential Equations, 269 (2020), 7231-7252.  doi: 10.1016/j.jde.2020.05.026.
    [19] W. Dai and G. Qin, Liouville type theorems for Hardy-Henon equations with concave nonlinearities, Math. Nachr., 293 (2020), 1084-1093.  doi: 10.1002/mana.201800532.
    [20] W. DaiG. Qin and Y. Zhang, Liouville type theorem for higher order Hénon equations on a half space, Nonlinear Analysis, 183 (2019), 284-302.  doi: 10.1016/j.na.2019.01.033.
    [21] M. Fazly and J. Wei, On stable solutions of the fractional Hénon-Lane-Emden equation, Commun. Contemp. Math., 18 (2016), 1650005, 24 pp. doi: 10.1142/S021919971650005X.
    [22] M. Fazly and J. Wei, On finite Morse index solutions of higher order fractional Lane-Emden equations, Amer. J. Math., 139 (2017), 433-460.  doi: 10.1353/ajm.2017.0011.
    [23] T. Kulczycki, Properties of Green function of symmetric stable processes, Probability and Mathematical Statistics, 17 (1997), 339-364. 
    [24] K. Li and Z. Zhang, Proof of the Hénon-Lane-Emden conjecture in $\mathbb{R}^{3}$, Journal of Differential Equations, 266 (2017), 202-226.  doi: 10.1016/j.jde.2018.07.036.
    [25] E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $\mathbb{R}^{N}$, Differential Integral Equations, 9 (1996), 465-479. 
    [26] S. Peng, Liouville theorems for fractional and higher order Hénon-Hardy systems on $\mathbb{R}^n$, Complex Var. Elliptic Equ., (2020), 25 pp. doi: 10.1080/17476933.2020.1783661.
    [27] P. PoláčikP. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic systems, Duke Math. J., 139 (2007), 555-579.  doi: 10.1215/S0012-7094-07-13935-8.
    [28] A. Quaas and A. Xia, A Liouville type theorem for Lane-Emden systems involving the fractional Laplacian, Nonlinerity, 29 (2016), 2279-2297.  doi: 10.1088/0951-7715/29/8/2279.
    [29] J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden systems, Differential Integral Equations, 9 (1996), 635-653. 
    [30] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.
    [31] P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions, Adv. Math., 221 (2009), 1409-1427.  doi: 10.1016/j.aim.2009.02.014.
    [32] M. A. S. Souto, A priori estimates and existence of positive solutions of non-linear cooperative elliptic systems, Differential Integral Equations, 8 (1995), 1245-1258. 
    [33] E. M. SteinSingular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J., 1970. 
    [34] R. Zhuo and Y. Li, Liouville theorem for the higher-order fractional Laplacian, Commun. Contemp. Math., 21 (2019), 1850005, 19 pp. doi: 10.1142/S0219199718500050.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(613) PDF downloads(301) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return