
-
Previous Article
An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth
- DCDS Home
- This Issue
-
Next Article
Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems
Liouville type theorems for fractional and higher-order fractional systems
1. | School of Mathematics and Information Science, Guangzhou University, Guangzhou 510405, China |
2. | Institute of Applied Mathematics, AMSS, Chinese Academy of Sciences, Beijing 100190, China |
3. | Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100190, China |
4. | University of Chinese Academy of sciences, Beijing 100049, China |
In this paper, we first establish decay estimates for the fractional and higher-order fractional Hénon-Lane-Emden systems by using a nonlocal average and integral estimates, which deduce a result of non-existence. Next, we apply the method of scaling spheres introduced in [
References:
[1] |
A. Biswas,
Liouville type results for systems of equations involving fractional Laplacian in exterior domains, Nonlinearity, 32 (2019), 2246-2268.
doi: 10.1088/1361-6544/ab091b. |
[2] |
L. Caffarelli and L. Silvestre,
An extension problem related to the fractional Laplacian, Comm. PDE., 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[3] |
D. Cao and W. Dai,
Classification of nonnegative solutions to a bi-harmonic equation with Hartree type nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 149 (2019), 979-994.
doi: 10.1017/prm.2018.67. |
[4] |
D. Cao, W. Dai and G. Qin, Super poly-harmonic properties, Liouville theorems and classification of nonnegative solutions to equations involving higher-order fractional Laplacians, preprint, arXiv: 1905.04300. Google Scholar |
[5] |
W. Chen, W. Dai and G. Qin, Liouville type theorems, a priori estimates and existence of solutions for critical order Hardy-Hénon equations in $\mathbb{R}^n$, preprint, arXiv: 1808.06609. Google Scholar |
[6] |
W. Chen, Y. Fang and R. Yang,
Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015), 167-198.
doi: 10.1016/j.aim.2014.12.013. |
[7] |
W. Chen and C. Li,
Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.
doi: 10.1215/S0012-7094-91-06325-8. |
[8] |
W. Chen and C. Li,
Super polyharmonic property of solutions for PDE systems and its applications, Comm. Pure Appl. Anal., 12 (2013), 2497-2514.
doi: 10.3934/cpaa.2013.12.2497. |
[9] |
W. Chen, Y. Li and P. Ma, The Fractional Laplacian, World Scientific Publishing Co. Pte. Ltd., 2020,344 pp, https://doi.org/10.1142/10550. Google Scholar |
[10] |
W. Chen, C. Li and Y. Li,
A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.
doi: 10.1016/j.aim.2016.11.038. |
[11] |
W. Dai, Y. Fang, J. Huang, Y. Qin and B. Wang,
Regularity and classification of solutions to static Hartree equations involving fractional Laplacians, Discrete Contin. Dyn. Syst. - A, 39 (2019), 1389-1403.
doi: 10.3934/dcds.2018117. |
[12] |
W. Dai and Z. Liu,
Classification of positive solutions to a system of Hardy-Sobolev type equations, Acta Mathematica Scientia, 37 (2017), 1415-1436.
doi: 10.1016/S0252-9602(17)30082-6. |
[13] |
W. Dai and Z. Liu, Classification of nonnegative solutions to static Schrödinger-Hartree and Schrödinger-Maxwell equations with combined nonlinearities, Calc. Var. Partial Differential Equations, 58 (2019), Paper No. 156, 24 pp.
doi: 10.1007/s00526-019-1595-z. |
[14] |
W. Dai, Z. Liu and G. Qin, Classification of nonnegative solutions to static Schrödinger-Hartree-Maxwell type equations, preprint, arXiv: 1909.00492. Google Scholar |
[15] |
W. Dai and G. Qin,
Classification of nonnegative classical solutions to third-order equations, Adv. Math., 328 (2018), 822-857.
doi: 10.1016/j.aim.2018.02.016. |
[16] |
W. Dai and G. Qin, Liouville type theorems for fractional and higher order Hénon-Hardy type equations via the method of scaling spheres, preprint, arXiv: 1810.02752. Google Scholar |
[17] |
W. Dai and G. Qin, Liouville type theorem for critical order Hénon-Lane-Emden type equations on a half space and its applications, preprint, arXiv: 1811.00881. Google Scholar |
[18] |
W. Dai and G. Qin,
Liouville type theorems for elliptic equations with Dirichlet conditions in exterior domains, Journal of Differential Equations, 269 (2020), 7231-7252.
doi: 10.1016/j.jde.2020.05.026. |
[19] |
W. Dai and G. Qin,
Liouville type theorems for Hardy-Henon equations with concave nonlinearities, Math. Nachr., 293 (2020), 1084-1093.
doi: 10.1002/mana.201800532. |
[20] |
W. Dai, G. Qin and Y. Zhang,
Liouville type theorem for higher order Hénon equations on a half space, Nonlinear Analysis, 183 (2019), 284-302.
doi: 10.1016/j.na.2019.01.033. |
[21] |
M. Fazly and J. Wei, On stable solutions of the fractional Hénon-Lane-Emden equation, Commun. Contemp. Math., 18 (2016), 1650005, 24 pp.
doi: 10.1142/S021919971650005X. |
[22] |
M. Fazly and J. Wei,
On finite Morse index solutions of higher order fractional Lane-Emden equations, Amer. J. Math., 139 (2017), 433-460.
doi: 10.1353/ajm.2017.0011. |
[23] |
T. Kulczycki,
Properties of Green function of symmetric stable processes, Probability and Mathematical Statistics, 17 (1997), 339-364.
|
[24] |
K. Li and Z. Zhang,
Proof of the Hénon-Lane-Emden conjecture in $\mathbb{R}^{3}$, Journal of Differential Equations, 266 (2017), 202-226.
doi: 10.1016/j.jde.2018.07.036. |
[25] |
E. Mitidieri,
Nonexistence of positive solutions of semilinear elliptic systems in $\mathbb{R}^{N}$, Differential Integral Equations, 9 (1996), 465-479.
|
[26] |
S. Peng, Liouville theorems for fractional and higher order Hénon-Hardy systems on $\mathbb{R}^n$, Complex Var. Elliptic Equ., (2020), 25 pp.
doi: 10.1080/17476933.2020.1783661. |
[27] |
P. Poláčik, P. Quittner and P. Souplet,
Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic systems, Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8. |
[28] |
A. Quaas and A. Xia,
A Liouville type theorem for Lane-Emden systems involving the fractional Laplacian, Nonlinerity, 29 (2016), 2279-2297.
doi: 10.1088/0951-7715/29/8/2279. |
[29] |
J. Serrin and H. Zou,
Non-existence of positive solutions of Lane-Emden systems, Differential Integral Equations, 9 (1996), 635-653.
|
[30] |
L. Silvestre,
Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.
doi: 10.1002/cpa.20153. |
[31] |
P. Souplet,
The proof of the Lane-Emden conjecture in four space dimensions, Adv. Math., 221 (2009), 1409-1427.
doi: 10.1016/j.aim.2009.02.014. |
[32] |
M. A. S. Souto,
A priori estimates and existence of positive solutions of non-linear cooperative elliptic systems, Differential Integral Equations, 8 (1995), 1245-1258.
|
[33] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J., 1970.
![]() |
[34] |
R. Zhuo and Y. Li, Liouville theorem for the higher-order fractional Laplacian, Commun. Contemp. Math., 21 (2019), 1850005, 19 pp.
doi: 10.1142/S0219199718500050. |
show all references
References:
[1] |
A. Biswas,
Liouville type results for systems of equations involving fractional Laplacian in exterior domains, Nonlinearity, 32 (2019), 2246-2268.
doi: 10.1088/1361-6544/ab091b. |
[2] |
L. Caffarelli and L. Silvestre,
An extension problem related to the fractional Laplacian, Comm. PDE., 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[3] |
D. Cao and W. Dai,
Classification of nonnegative solutions to a bi-harmonic equation with Hartree type nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 149 (2019), 979-994.
doi: 10.1017/prm.2018.67. |
[4] |
D. Cao, W. Dai and G. Qin, Super poly-harmonic properties, Liouville theorems and classification of nonnegative solutions to equations involving higher-order fractional Laplacians, preprint, arXiv: 1905.04300. Google Scholar |
[5] |
W. Chen, W. Dai and G. Qin, Liouville type theorems, a priori estimates and existence of solutions for critical order Hardy-Hénon equations in $\mathbb{R}^n$, preprint, arXiv: 1808.06609. Google Scholar |
[6] |
W. Chen, Y. Fang and R. Yang,
Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015), 167-198.
doi: 10.1016/j.aim.2014.12.013. |
[7] |
W. Chen and C. Li,
Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.
doi: 10.1215/S0012-7094-91-06325-8. |
[8] |
W. Chen and C. Li,
Super polyharmonic property of solutions for PDE systems and its applications, Comm. Pure Appl. Anal., 12 (2013), 2497-2514.
doi: 10.3934/cpaa.2013.12.2497. |
[9] |
W. Chen, Y. Li and P. Ma, The Fractional Laplacian, World Scientific Publishing Co. Pte. Ltd., 2020,344 pp, https://doi.org/10.1142/10550. Google Scholar |
[10] |
W. Chen, C. Li and Y. Li,
A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.
doi: 10.1016/j.aim.2016.11.038. |
[11] |
W. Dai, Y. Fang, J. Huang, Y. Qin and B. Wang,
Regularity and classification of solutions to static Hartree equations involving fractional Laplacians, Discrete Contin. Dyn. Syst. - A, 39 (2019), 1389-1403.
doi: 10.3934/dcds.2018117. |
[12] |
W. Dai and Z. Liu,
Classification of positive solutions to a system of Hardy-Sobolev type equations, Acta Mathematica Scientia, 37 (2017), 1415-1436.
doi: 10.1016/S0252-9602(17)30082-6. |
[13] |
W. Dai and Z. Liu, Classification of nonnegative solutions to static Schrödinger-Hartree and Schrödinger-Maxwell equations with combined nonlinearities, Calc. Var. Partial Differential Equations, 58 (2019), Paper No. 156, 24 pp.
doi: 10.1007/s00526-019-1595-z. |
[14] |
W. Dai, Z. Liu and G. Qin, Classification of nonnegative solutions to static Schrödinger-Hartree-Maxwell type equations, preprint, arXiv: 1909.00492. Google Scholar |
[15] |
W. Dai and G. Qin,
Classification of nonnegative classical solutions to third-order equations, Adv. Math., 328 (2018), 822-857.
doi: 10.1016/j.aim.2018.02.016. |
[16] |
W. Dai and G. Qin, Liouville type theorems for fractional and higher order Hénon-Hardy type equations via the method of scaling spheres, preprint, arXiv: 1810.02752. Google Scholar |
[17] |
W. Dai and G. Qin, Liouville type theorem for critical order Hénon-Lane-Emden type equations on a half space and its applications, preprint, arXiv: 1811.00881. Google Scholar |
[18] |
W. Dai and G. Qin,
Liouville type theorems for elliptic equations with Dirichlet conditions in exterior domains, Journal of Differential Equations, 269 (2020), 7231-7252.
doi: 10.1016/j.jde.2020.05.026. |
[19] |
W. Dai and G. Qin,
Liouville type theorems for Hardy-Henon equations with concave nonlinearities, Math. Nachr., 293 (2020), 1084-1093.
doi: 10.1002/mana.201800532. |
[20] |
W. Dai, G. Qin and Y. Zhang,
Liouville type theorem for higher order Hénon equations on a half space, Nonlinear Analysis, 183 (2019), 284-302.
doi: 10.1016/j.na.2019.01.033. |
[21] |
M. Fazly and J. Wei, On stable solutions of the fractional Hénon-Lane-Emden equation, Commun. Contemp. Math., 18 (2016), 1650005, 24 pp.
doi: 10.1142/S021919971650005X. |
[22] |
M. Fazly and J. Wei,
On finite Morse index solutions of higher order fractional Lane-Emden equations, Amer. J. Math., 139 (2017), 433-460.
doi: 10.1353/ajm.2017.0011. |
[23] |
T. Kulczycki,
Properties of Green function of symmetric stable processes, Probability and Mathematical Statistics, 17 (1997), 339-364.
|
[24] |
K. Li and Z. Zhang,
Proof of the Hénon-Lane-Emden conjecture in $\mathbb{R}^{3}$, Journal of Differential Equations, 266 (2017), 202-226.
doi: 10.1016/j.jde.2018.07.036. |
[25] |
E. Mitidieri,
Nonexistence of positive solutions of semilinear elliptic systems in $\mathbb{R}^{N}$, Differential Integral Equations, 9 (1996), 465-479.
|
[26] |
S. Peng, Liouville theorems for fractional and higher order Hénon-Hardy systems on $\mathbb{R}^n$, Complex Var. Elliptic Equ., (2020), 25 pp.
doi: 10.1080/17476933.2020.1783661. |
[27] |
P. Poláčik, P. Quittner and P. Souplet,
Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic systems, Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8. |
[28] |
A. Quaas and A. Xia,
A Liouville type theorem for Lane-Emden systems involving the fractional Laplacian, Nonlinerity, 29 (2016), 2279-2297.
doi: 10.1088/0951-7715/29/8/2279. |
[29] |
J. Serrin and H. Zou,
Non-existence of positive solutions of Lane-Emden systems, Differential Integral Equations, 9 (1996), 635-653.
|
[30] |
L. Silvestre,
Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.
doi: 10.1002/cpa.20153. |
[31] |
P. Souplet,
The proof of the Lane-Emden conjecture in four space dimensions, Adv. Math., 221 (2009), 1409-1427.
doi: 10.1016/j.aim.2009.02.014. |
[32] |
M. A. S. Souto,
A priori estimates and existence of positive solutions of non-linear cooperative elliptic systems, Differential Integral Equations, 8 (1995), 1245-1258.
|
[33] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J., 1970.
![]() |
[34] |
R. Zhuo and Y. Li, Liouville theorem for the higher-order fractional Laplacian, Commun. Contemp. Math., 21 (2019), 1850005, 19 pp.
doi: 10.1142/S0219199718500050. |

[1] |
Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034 |
[2] |
Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255 |
[3] |
Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291 |
[4] |
Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020296 |
[5] |
Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129 |
[6] |
Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011 |
[7] |
Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268 |
[8] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020354 |
[9] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001 |
[10] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[11] |
Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021001 |
[12] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[13] |
Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020355 |
[14] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[15] |
Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 |
[16] |
Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020376 |
[17] |
Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020379 |
[18] |
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 |
[19] |
Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292 |
[20] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020395 |
2019 Impact Factor: 1.338
Tools
Article outline
Figures and Tables
[Back to Top]