May  2021, 41(5): 2285-2300. doi: 10.3934/dcds.2020362

Sliding method for the semi-linear elliptic equations involving the uniformly elliptic nonlocal operators

1. 

School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, China

2. 

School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China

* Corresponding author: Ting Zhang

Received  June 2020 Revised  August 2020 Published  May 2021 Early access  October 2020

In this paper, we consider the uniformly elliptic nonlocal operators
$ A_{\alpha} u(x) = C_{n,\alpha} \rm{P.V.} \int_{\mathbb{R}^n} \frac{a(x-y)(u(x)-u(y))}{|x-y|^{n+\alpha}} dy, $
where
$ a(x) $
is positively uniform bounded satisfying a cylindrical condition. We first establish the narrow region principle in the bounded domain. Then using the sliding method, we obtain the monotonicity of solutions for the semi-linear equation involving
$ A_{\alpha} $
in both the bounded domain and the whole space. In addition, we establish the maximum principle in the unbounded domain and get the non-existence of solutions in the upper half space
$ \mathbb R^n_+ $
.
Citation: Meng Qu, Jiayan Wu, Ting Zhang. Sliding method for the semi-linear elliptic equations involving the uniformly elliptic nonlocal operators. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2285-2300. doi: 10.3934/dcds.2020362
References:
[1]

H. Berestycki, L. A. Caffarelli and L. Nirenberg, Symmetry for elliptic equations in a half space, in Boundary Value Problems for Partial Differential Equations and Applications, RMA Res. Notes Appl. Math., Masson, Paris, 29 (1993), 27-42.

[2]

H. BerestyckiF. Hamel and R. Monneau, One-dimensional symmetry of bounded entire solutions of some elliptic equations, Duke Math. J., 103 (2000), 375-396.  doi: 10.1215/S0012-7094-00-10331-6.

[3]

H. Berestycki and L. Nirenberg, Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations, J. Geom. Phys., 5 (1988), 237-275.  doi: 10.1016/0393-0440(88)90006-X.

[4]

H. Berestycki and L. Nirenberg, Some qualitative properties of solutions of semilinear elliptic equations in cylindrical domains, in Analysis, et Cetera, Academic Press, Boston, MA, (1990), 115-164.

[5]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.), 22 (1991), 1-37.  doi: 10.1007/BF01244896.

[6]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.

[7]

L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009), 597-638.  doi: 10.1002/cpa.20274.

[8]

L. Caffarelli and L. Silvestre, Regularity results for nonlocal equations by approximation, Arch. Ration. Mech. Anal., 200 (2011), 59-88.  doi: 10.1007/s00205-010-0336-4.

[9]

W. ChenY. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015), 167-198.  doi: 10.1016/j.aim.2014.12.013.

[10]

W. Chen and C. Li, Maximum principles for the fractional $p$-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.

[11]

W. Chen, C. Li and G. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differential Equations, 56 (2017), Paper No. 29, 18 pp. doi: 10.1007/s00526-017-1110-3.

[12]

W. Chen, C. Li and Y. Li, A direct blowing-up and rescaling argument on nonlocal elliptic equations, Internat. J. Math., 27 (2016), 1650064, 20 pp. doi: 10.1142/S0129167X16500646.

[13]

W. ChenC. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.

[14]

W. ChenC. Li and B. Ou, Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst., 12 (2005), 347-354.  doi: 10.3934/dcds.2005.12.347.

[15]

W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.

[16]

W. Chen and S. Qi, Direct methods on fractional equations, Discrete Contin. Dyn. Syst., 39 (2019), 1269-1310.  doi: 10.3934/dcds.2019055.

[17]

W. Chen and J. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations, 260 (2016), 4758-4785.  doi: 10.1016/j.jde.2015.11.029.

[18]

X. Chen, G. Bao and G. Li, The sliding method for the nonlocal Monge-Ampère operator, Nonlinear Anal., 196 (2020), 111786, 13 pp. doi: 10.1016/j.na.2020.111786.

[19]

T. Cheng, G. Huang and C. Li, The maximum principles for fractional Laplacian equations and their applications, Commun. Contemp. Math., 19 (2017), 1750018, 12. doi: 10.1142/S0219199717500183.

[20]

C. LiZ. Wu and H. Xu, Maximum principles and Bôcher type theorems, Proc. Natl. Acad. Sci. USA, 115 (2018), 6976-6979.  doi: 10.1073/pnas.1804225115.

[21]

Z. Liu, Maximum principles and monotonicity of solutions for fractional $p$-equations in unbounded domains, J. Differential Equations, 270 (2021), 1043-1078. arXiv: 1905.06493. doi: 10.1016/j.jde.2020.09.001.

[22]

L. Ma and Z. Zhang, Monotonicity of positive solutions for fractional $p$-systems in unbounded Lipschitz domains, Nonlinear Anal., 198 (2020), 111892, 18 pp. doi: 10.1016/j.na.2020.111892.

[23]

D. Tang, Positive solutions to semilinear elliptic equations involving a weighted fractional Lapalacian, Math. Methods Appl. Sci., 40 (2017), 2596-2609.  doi: 10.1002/mma.4184.

[24]

L. Wu and W. Chen, Monotonicity of solutions for fractional equations with De Giorgi type nonlinearities. (in chinese), Sci. Sin. Math., (2020), to appear.

[25]

L. Wu and W. Chen, The sliding methods for the fractional $p$-Laplacian, Adv. Math., 361 (2020), 106933, 26 pp. doi: 10.1016/j.aim.2019.106933.

show all references

References:
[1]

H. Berestycki, L. A. Caffarelli and L. Nirenberg, Symmetry for elliptic equations in a half space, in Boundary Value Problems for Partial Differential Equations and Applications, RMA Res. Notes Appl. Math., Masson, Paris, 29 (1993), 27-42.

[2]

H. BerestyckiF. Hamel and R. Monneau, One-dimensional symmetry of bounded entire solutions of some elliptic equations, Duke Math. J., 103 (2000), 375-396.  doi: 10.1215/S0012-7094-00-10331-6.

[3]

H. Berestycki and L. Nirenberg, Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations, J. Geom. Phys., 5 (1988), 237-275.  doi: 10.1016/0393-0440(88)90006-X.

[4]

H. Berestycki and L. Nirenberg, Some qualitative properties of solutions of semilinear elliptic equations in cylindrical domains, in Analysis, et Cetera, Academic Press, Boston, MA, (1990), 115-164.

[5]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.), 22 (1991), 1-37.  doi: 10.1007/BF01244896.

[6]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.

[7]

L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009), 597-638.  doi: 10.1002/cpa.20274.

[8]

L. Caffarelli and L. Silvestre, Regularity results for nonlocal equations by approximation, Arch. Ration. Mech. Anal., 200 (2011), 59-88.  doi: 10.1007/s00205-010-0336-4.

[9]

W. ChenY. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015), 167-198.  doi: 10.1016/j.aim.2014.12.013.

[10]

W. Chen and C. Li, Maximum principles for the fractional $p$-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.  doi: 10.1016/j.aim.2018.07.016.

[11]

W. Chen, C. Li and G. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differential Equations, 56 (2017), Paper No. 29, 18 pp. doi: 10.1007/s00526-017-1110-3.

[12]

W. Chen, C. Li and Y. Li, A direct blowing-up and rescaling argument on nonlocal elliptic equations, Internat. J. Math., 27 (2016), 1650064, 20 pp. doi: 10.1142/S0129167X16500646.

[13]

W. ChenC. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.  doi: 10.1016/j.aim.2016.11.038.

[14]

W. ChenC. Li and B. Ou, Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst., 12 (2005), 347-354.  doi: 10.3934/dcds.2005.12.347.

[15]

W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.

[16]

W. Chen and S. Qi, Direct methods on fractional equations, Discrete Contin. Dyn. Syst., 39 (2019), 1269-1310.  doi: 10.3934/dcds.2019055.

[17]

W. Chen and J. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations, 260 (2016), 4758-4785.  doi: 10.1016/j.jde.2015.11.029.

[18]

X. Chen, G. Bao and G. Li, The sliding method for the nonlocal Monge-Ampère operator, Nonlinear Anal., 196 (2020), 111786, 13 pp. doi: 10.1016/j.na.2020.111786.

[19]

T. Cheng, G. Huang and C. Li, The maximum principles for fractional Laplacian equations and their applications, Commun. Contemp. Math., 19 (2017), 1750018, 12. doi: 10.1142/S0219199717500183.

[20]

C. LiZ. Wu and H. Xu, Maximum principles and Bôcher type theorems, Proc. Natl. Acad. Sci. USA, 115 (2018), 6976-6979.  doi: 10.1073/pnas.1804225115.

[21]

Z. Liu, Maximum principles and monotonicity of solutions for fractional $p$-equations in unbounded domains, J. Differential Equations, 270 (2021), 1043-1078. arXiv: 1905.06493. doi: 10.1016/j.jde.2020.09.001.

[22]

L. Ma and Z. Zhang, Monotonicity of positive solutions for fractional $p$-systems in unbounded Lipschitz domains, Nonlinear Anal., 198 (2020), 111892, 18 pp. doi: 10.1016/j.na.2020.111892.

[23]

D. Tang, Positive solutions to semilinear elliptic equations involving a weighted fractional Lapalacian, Math. Methods Appl. Sci., 40 (2017), 2596-2609.  doi: 10.1002/mma.4184.

[24]

L. Wu and W. Chen, Monotonicity of solutions for fractional equations with De Giorgi type nonlinearities. (in chinese), Sci. Sin. Math., (2020), to appear.

[25]

L. Wu and W. Chen, The sliding methods for the fractional $p$-Laplacian, Adv. Math., 361 (2020), 106933, 26 pp. doi: 10.1016/j.aim.2019.106933.

[1]

Meng Qu, Ping Li, Liu Yang. Symmetry and monotonicity of solutions for the fully nonlinear nonlocal equation. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1337-1349. doi: 10.3934/cpaa.2020065

[2]

Henrik Garde, Stratos Staboulis. The regularized monotonicity method: Detecting irregular indefinite inclusions. Inverse Problems and Imaging, 2019, 13 (1) : 93-116. doi: 10.3934/ipi.2019006

[3]

Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143

[4]

Yahui Niu. Monotonicity of solutions for a class of nonlocal Monge-Ampère problem. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5269-5283. doi: 10.3934/cpaa.2020237

[5]

José A. Carrillo, Dejan Slepčev, Lijiang Wu. Nonlocal-interaction equations on uniformly prox-regular sets. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1209-1247. doi: 10.3934/dcds.2016.36.1209

[6]

Limei Dai. Entire solutions with asymptotic behavior of fully nonlinear uniformly elliptic equations. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1707-1714. doi: 10.3934/cpaa.2011.10.1707

[7]

D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure and Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499

[8]

Lorenza D'Elia. $ \Gamma $-convergence of quadratic functionals with non uniformly elliptic conductivity matrices. Networks and Heterogeneous Media, 2022, 17 (1) : 15-45. doi: 10.3934/nhm.2021022

[9]

Rua Murray. Ulam's method for some non-uniformly expanding maps. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 1007-1018. doi: 10.3934/dcds.2010.26.1007

[10]

Yunping Jiang, Yuan-Ling Ye. Convergence speed of a Ruelle operator associated with a non-uniformly expanding conformal dynamical system and a Dini potential. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4693-4713. doi: 10.3934/dcds.2018206

[11]

John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1347-1361. doi: 10.3934/cpaa.2021023

[12]

Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4297-4318. doi: 10.3934/dcds.2021037

[13]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems and Imaging, 2021, 15 (4) : 599-618. doi: 10.3934/ipi.2021006

[14]

Liejune Shiau, Roland Glowinski. Operator splitting method for friction constrained dynamical systems. Conference Publications, 2005, 2005 (Special) : 806-815. doi: 10.3934/proc.2005.2005.806

[15]

Francesco Esposito. Symmetry and monotonicity properties of singular solutions to some cooperative semilinear elliptic systems involving critical nonlinearities. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 549-577. doi: 10.3934/dcds.2020022

[16]

Phuong Le, Hoang-Hung Vo. Monotonicity and symmetry of positive solutions to degenerate quasilinear elliptic systems in half-spaces and strips. Communications on Pure and Applied Analysis, 2022, 21 (3) : 1027-1048. doi: 10.3934/cpaa.2022008

[17]

Ouayl Chadli, Gayatri Pany, Ram N. Mohapatra. Existence and iterative approximation method for solving mixed equilibrium problem under generalized monotonicity in Banach spaces. Numerical Algebra, Control and Optimization, 2020, 10 (1) : 75-92. doi: 10.3934/naco.2019034

[18]

Prashanta Garain, Tuhina Mukherjee. Quasilinear nonlocal elliptic problems with variable singular exponent. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5059-5075. doi: 10.3934/cpaa.2020226

[19]

Mostafa Fazly. Regularity of extremal solutions of nonlocal elliptic systems. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 107-131. doi: 10.3934/dcds.2020005

[20]

Mousomi Bhakta, Debangana Mukherjee. Semilinear nonlocal elliptic equations with critical and supercritical exponents. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1741-1766. doi: 10.3934/cpaa.2017085

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (287)
  • HTML views (189)
  • Cited by (0)

Other articles
by authors

[Back to Top]