-
Previous Article
Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed
- DCDS Home
- This Issue
-
Next Article
Another point of view on Kusuoka's measure
Sliding method for the semi-linear elliptic equations involving the uniformly elliptic nonlocal operators
1. | School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, China |
2. | School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China |
$ A_{\alpha} u(x) = C_{n,\alpha} \rm{P.V.} \int_{\mathbb{R}^n} \frac{a(x-y)(u(x)-u(y))}{|x-y|^{n+\alpha}} dy, $ |
$ a(x) $ |
$ A_{\alpha} $ |
$ \mathbb R^n_+ $ |
References:
[1] |
H. Berestycki, L. A. Caffarelli and L. Nirenberg, Symmetry for elliptic equations in a half space, in Boundary Value Problems for Partial Differential Equations and Applications, RMA Res. Notes Appl. Math., Masson, Paris, 29 (1993), 27-42. |
[2] |
H. Berestycki, F. Hamel and R. Monneau,
One-dimensional symmetry of bounded entire solutions of some elliptic equations, Duke Math. J., 103 (2000), 375-396.
doi: 10.1215/S0012-7094-00-10331-6. |
[3] |
H. Berestycki and L. Nirenberg,
Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations, J. Geom. Phys., 5 (1988), 237-275.
doi: 10.1016/0393-0440(88)90006-X. |
[4] |
H. Berestycki and L. Nirenberg, Some qualitative properties of solutions of semilinear elliptic equations in cylindrical domains, in Analysis, et Cetera, Academic Press, Boston, MA, (1990), 115-164. |
[5] |
H. Berestycki and L. Nirenberg,
On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.), 22 (1991), 1-37.
doi: 10.1007/BF01244896. |
[6] |
L. Caffarelli and L. Silvestre,
An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[7] |
L. Caffarelli and L. Silvestre,
Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009), 597-638.
doi: 10.1002/cpa.20274. |
[8] |
L. Caffarelli and L. Silvestre,
Regularity results for nonlocal equations by approximation, Arch. Ration. Mech. Anal., 200 (2011), 59-88.
doi: 10.1007/s00205-010-0336-4. |
[9] |
W. Chen, Y. Fang and R. Yang,
Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015), 167-198.
doi: 10.1016/j.aim.2014.12.013. |
[10] |
W. Chen and C. Li,
Maximum principles for the fractional $p$-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.
doi: 10.1016/j.aim.2018.07.016. |
[11] |
W. Chen, C. Li and G. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differential Equations, 56 (2017), Paper No. 29, 18 pp.
doi: 10.1007/s00526-017-1110-3. |
[12] |
W. Chen, C. Li and Y. Li, A direct blowing-up and rescaling argument on nonlocal elliptic equations, Internat. J. Math., 27 (2016), 1650064, 20 pp.
doi: 10.1142/S0129167X16500646. |
[13] |
W. Chen, C. Li and Y. Li,
A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.
doi: 10.1016/j.aim.2016.11.038. |
[14] |
W. Chen, C. Li and B. Ou,
Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst., 12 (2005), 347-354.
doi: 10.3934/dcds.2005.12.347. |
[15] |
W. Chen, C. Li and B. Ou,
Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[16] |
W. Chen and S. Qi,
Direct methods on fractional equations, Discrete Contin. Dyn. Syst., 39 (2019), 1269-1310.
doi: 10.3934/dcds.2019055. |
[17] |
W. Chen and J. Zhu,
Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations, 260 (2016), 4758-4785.
doi: 10.1016/j.jde.2015.11.029. |
[18] |
X. Chen, G. Bao and G. Li, The sliding method for the nonlocal Monge-Ampère operator, Nonlinear Anal., 196 (2020), 111786, 13 pp.
doi: 10.1016/j.na.2020.111786. |
[19] |
T. Cheng, G. Huang and C. Li, The maximum principles for fractional Laplacian equations and their applications, Commun. Contemp. Math., 19 (2017), 1750018, 12.
doi: 10.1142/S0219199717500183. |
[20] |
C. Li, Z. Wu and H. Xu,
Maximum principles and Bôcher type theorems, Proc. Natl. Acad. Sci. USA, 115 (2018), 6976-6979.
doi: 10.1073/pnas.1804225115. |
[21] |
Z. Liu, Maximum principles and monotonicity of solutions for fractional $p$-equations in unbounded domains, J. Differential Equations, 270 (2021), 1043-1078. arXiv: 1905.06493.
doi: 10.1016/j.jde.2020.09.001. |
[22] |
L. Ma and Z. Zhang, Monotonicity of positive solutions for fractional $p$-systems in unbounded Lipschitz domains, Nonlinear Anal., 198 (2020), 111892, 18 pp.
doi: 10.1016/j.na.2020.111892. |
[23] |
D. Tang,
Positive solutions to semilinear elliptic equations involving a weighted fractional Lapalacian, Math. Methods Appl. Sci., 40 (2017), 2596-2609.
doi: 10.1002/mma.4184. |
[24] |
L. Wu and W. Chen, Monotonicity of solutions for fractional equations with De Giorgi type nonlinearities. (in chinese), Sci. Sin. Math., (2020), to appear. Google Scholar |
[25] |
L. Wu and W. Chen, The sliding methods for the fractional $p$-Laplacian, Adv. Math., 361 (2020), 106933, 26 pp.
doi: 10.1016/j.aim.2019.106933. |
show all references
References:
[1] |
H. Berestycki, L. A. Caffarelli and L. Nirenberg, Symmetry for elliptic equations in a half space, in Boundary Value Problems for Partial Differential Equations and Applications, RMA Res. Notes Appl. Math., Masson, Paris, 29 (1993), 27-42. |
[2] |
H. Berestycki, F. Hamel and R. Monneau,
One-dimensional symmetry of bounded entire solutions of some elliptic equations, Duke Math. J., 103 (2000), 375-396.
doi: 10.1215/S0012-7094-00-10331-6. |
[3] |
H. Berestycki and L. Nirenberg,
Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations, J. Geom. Phys., 5 (1988), 237-275.
doi: 10.1016/0393-0440(88)90006-X. |
[4] |
H. Berestycki and L. Nirenberg, Some qualitative properties of solutions of semilinear elliptic equations in cylindrical domains, in Analysis, et Cetera, Academic Press, Boston, MA, (1990), 115-164. |
[5] |
H. Berestycki and L. Nirenberg,
On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.), 22 (1991), 1-37.
doi: 10.1007/BF01244896. |
[6] |
L. Caffarelli and L. Silvestre,
An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[7] |
L. Caffarelli and L. Silvestre,
Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009), 597-638.
doi: 10.1002/cpa.20274. |
[8] |
L. Caffarelli and L. Silvestre,
Regularity results for nonlocal equations by approximation, Arch. Ration. Mech. Anal., 200 (2011), 59-88.
doi: 10.1007/s00205-010-0336-4. |
[9] |
W. Chen, Y. Fang and R. Yang,
Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015), 167-198.
doi: 10.1016/j.aim.2014.12.013. |
[10] |
W. Chen and C. Li,
Maximum principles for the fractional $p$-Laplacian and symmetry of solutions, Adv. Math., 335 (2018), 735-758.
doi: 10.1016/j.aim.2018.07.016. |
[11] |
W. Chen, C. Li and G. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differential Equations, 56 (2017), Paper No. 29, 18 pp.
doi: 10.1007/s00526-017-1110-3. |
[12] |
W. Chen, C. Li and Y. Li, A direct blowing-up and rescaling argument on nonlocal elliptic equations, Internat. J. Math., 27 (2016), 1650064, 20 pp.
doi: 10.1142/S0129167X16500646. |
[13] |
W. Chen, C. Li and Y. Li,
A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.
doi: 10.1016/j.aim.2016.11.038. |
[14] |
W. Chen, C. Li and B. Ou,
Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst., 12 (2005), 347-354.
doi: 10.3934/dcds.2005.12.347. |
[15] |
W. Chen, C. Li and B. Ou,
Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[16] |
W. Chen and S. Qi,
Direct methods on fractional equations, Discrete Contin. Dyn. Syst., 39 (2019), 1269-1310.
doi: 10.3934/dcds.2019055. |
[17] |
W. Chen and J. Zhu,
Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations, 260 (2016), 4758-4785.
doi: 10.1016/j.jde.2015.11.029. |
[18] |
X. Chen, G. Bao and G. Li, The sliding method for the nonlocal Monge-Ampère operator, Nonlinear Anal., 196 (2020), 111786, 13 pp.
doi: 10.1016/j.na.2020.111786. |
[19] |
T. Cheng, G. Huang and C. Li, The maximum principles for fractional Laplacian equations and their applications, Commun. Contemp. Math., 19 (2017), 1750018, 12.
doi: 10.1142/S0219199717500183. |
[20] |
C. Li, Z. Wu and H. Xu,
Maximum principles and Bôcher type theorems, Proc. Natl. Acad. Sci. USA, 115 (2018), 6976-6979.
doi: 10.1073/pnas.1804225115. |
[21] |
Z. Liu, Maximum principles and monotonicity of solutions for fractional $p$-equations in unbounded domains, J. Differential Equations, 270 (2021), 1043-1078. arXiv: 1905.06493.
doi: 10.1016/j.jde.2020.09.001. |
[22] |
L. Ma and Z. Zhang, Monotonicity of positive solutions for fractional $p$-systems in unbounded Lipschitz domains, Nonlinear Anal., 198 (2020), 111892, 18 pp.
doi: 10.1016/j.na.2020.111892. |
[23] |
D. Tang,
Positive solutions to semilinear elliptic equations involving a weighted fractional Lapalacian, Math. Methods Appl. Sci., 40 (2017), 2596-2609.
doi: 10.1002/mma.4184. |
[24] |
L. Wu and W. Chen, Monotonicity of solutions for fractional equations with De Giorgi type nonlinearities. (in chinese), Sci. Sin. Math., (2020), to appear. Google Scholar |
[25] |
L. Wu and W. Chen, The sliding methods for the fractional $p$-Laplacian, Adv. Math., 361 (2020), 106933, 26 pp.
doi: 10.1016/j.aim.2019.106933. |
[1] |
Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006 |
[2] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[3] |
Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020462 |
[4] |
Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327 |
[5] |
Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268 |
[6] |
Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269 |
[7] |
Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107 |
[8] |
Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020051 |
[9] |
Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020463 |
[10] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[11] |
Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253 |
[12] |
Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020385 |
[13] |
Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 |
[14] |
Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020054 |
[15] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020391 |
[16] |
Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003 |
[17] |
P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178 |
[18] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[19] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[20] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
2019 Impact Factor: 1.338
Tools
Article outline
[Back to Top]