doi: 10.3934/dcds.2020366

On the asymptotic properties for stationary solutions to the Navier-Stokes equations

Department of Mathematics, Colorado State University, 101 Weber Building, Fort Collins, CO 80523-1874, USA

* Corresponding author: Oleg Imanuvilov

Received  August 2019 Revised  July 2020 Published  November 2020

Fund Project: The author is supported by NSF grant DMS 1312900

In this paper we study solutions of the stationary Navier-Stokes system, and investigate the minimal decay rate for a nontrivial velocity field at infinity in outside of an obstacle. We prove that in an exterior domain if a solution $ v $ and its derivatives decay like $ O(|x|^{-k}) $ for sufficiently large $ k $, depending on the velocity field, as $ |x|\to \infty $, then $ v $ is zero on that exterior domain. Constructive estimate for $ k $ is given. In the case where velocity field is only bounded at infinity, we show that the infimum of $ L^2 $ norm of a velocity field on a unit ball located at distance $ t $ from an origin is bounded from below as $ Ce^{-\beta t^\frac 43\ln(t)}. $ The proof of these results are based on the Carleman type estimates, and also the Kelvin transform.

Citation: Oleg Imanuvilov. On the asymptotic properties for stationary solutions to the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020366
References:
[1]

J. Bourgain and C. E. Kenig, On localization in the Andersen-Bernoulli model in higher dimensions, Invent. Math., 161, (2005), 389–426. doi: 10.1007/s00222-004-0435-7.  Google Scholar

[2]

A.-P. Calderón, Uniqueness in the Cauchy problem for partial differential equations, Am. J. Math., 80 (1958), 16–36. doi: 10.2307/2372819.  Google Scholar

[3]

T. Carleman, Sur ur problème d'unicité pur les systémes d'équations aux dérivées partielles à deux variables indépendantes, Ark. Mat. Astr. Fys., 26 (1939), 9 pp.  Google Scholar

[4]

R. H. Dyer and D. E. Edmunds, Asymptotic behavior of solutions of the stationary Navier-Stokes equations, J. London Math. Soc., 44 (1969), 340-346.  doi: 10.1112/jlms/s1-44.1.340.  Google Scholar

[5]

R. Finn, Stationary solutions of the Navier-Stokes equations, Proc. Symp. Appl. Math. Amer. Math. Soc., 17 (1965), 121–153. Google Scholar

[6]

X. Fu, Q. Lü and X. Zhang, Carleman Estimates for Second Order Partial Differential Operators and Applications, A unified approach, Springer, 2019. doi: 10.1007/978-3-030-29530-1.  Google Scholar

[7]

L. Hörmander, The Analysis of Linear Partial Differential Operators III, Pseudo-differential Operators, Springer-Verlag, Berin, 1985.  Google Scholar

[8]

L. Hörmander, The Analysis of Linear Partial Differential Operators IV, Fourier Integral Operators, Springer-Verlag, Berin, 1985.  Google Scholar

[9]

L. Hörmander, Linear Partial Differential Operators, Spring-Verlag, Berlin, 1963.  Google Scholar

[10]

C. E. KenigJ. Sjöstrand and G. Uhlmann, The Calderón problem with partial data, Ann. of Math., 165 (2007), 567-591.  doi: 10.4007/annals.2007.165.567.  Google Scholar

[11]

C.-L. Lin, G. Uhlmann and J.-N. Wang, Optimal three-ball inequalities and quantitative uniqueness for the Stokes system, Discrete Contin. Dyn. Syst., 28 (2010), 1273–1290. doi: 10.3934/dcds.2010.28.1273.  Google Scholar

[12]

C.-L. Lin, G. Uhlmann and J.-N. Wang, Asymptotic behavior of solutions of the stationary Navier-Stokes equations in an exterior domain, Indiana Univ. Math. J., 60 (2011), 2093–2106. doi: 10.1512/iumj.2011.60.4490.  Google Scholar

[13]

C.-L. Lin and J.-N. Wang, Quantitative uniqueness estimates for the general second order elliptic equations, J. Func. Anal., 266 (2014), 5108–5125. doi: 10.1016/j.jfa.2014.02.016.  Google Scholar

[14]

R. Regbaoui, Strong unique continuation for Stokes equation, Comm. Partial Differential Equations, 24 (1999), 1891–1902. doi: 10.1080/03605309908821486.  Google Scholar

show all references

References:
[1]

J. Bourgain and C. E. Kenig, On localization in the Andersen-Bernoulli model in higher dimensions, Invent. Math., 161, (2005), 389–426. doi: 10.1007/s00222-004-0435-7.  Google Scholar

[2]

A.-P. Calderón, Uniqueness in the Cauchy problem for partial differential equations, Am. J. Math., 80 (1958), 16–36. doi: 10.2307/2372819.  Google Scholar

[3]

T. Carleman, Sur ur problème d'unicité pur les systémes d'équations aux dérivées partielles à deux variables indépendantes, Ark. Mat. Astr. Fys., 26 (1939), 9 pp.  Google Scholar

[4]

R. H. Dyer and D. E. Edmunds, Asymptotic behavior of solutions of the stationary Navier-Stokes equations, J. London Math. Soc., 44 (1969), 340-346.  doi: 10.1112/jlms/s1-44.1.340.  Google Scholar

[5]

R. Finn, Stationary solutions of the Navier-Stokes equations, Proc. Symp. Appl. Math. Amer. Math. Soc., 17 (1965), 121–153. Google Scholar

[6]

X. Fu, Q. Lü and X. Zhang, Carleman Estimates for Second Order Partial Differential Operators and Applications, A unified approach, Springer, 2019. doi: 10.1007/978-3-030-29530-1.  Google Scholar

[7]

L. Hörmander, The Analysis of Linear Partial Differential Operators III, Pseudo-differential Operators, Springer-Verlag, Berin, 1985.  Google Scholar

[8]

L. Hörmander, The Analysis of Linear Partial Differential Operators IV, Fourier Integral Operators, Springer-Verlag, Berin, 1985.  Google Scholar

[9]

L. Hörmander, Linear Partial Differential Operators, Spring-Verlag, Berlin, 1963.  Google Scholar

[10]

C. E. KenigJ. Sjöstrand and G. Uhlmann, The Calderón problem with partial data, Ann. of Math., 165 (2007), 567-591.  doi: 10.4007/annals.2007.165.567.  Google Scholar

[11]

C.-L. Lin, G. Uhlmann and J.-N. Wang, Optimal three-ball inequalities and quantitative uniqueness for the Stokes system, Discrete Contin. Dyn. Syst., 28 (2010), 1273–1290. doi: 10.3934/dcds.2010.28.1273.  Google Scholar

[12]

C.-L. Lin, G. Uhlmann and J.-N. Wang, Asymptotic behavior of solutions of the stationary Navier-Stokes equations in an exterior domain, Indiana Univ. Math. J., 60 (2011), 2093–2106. doi: 10.1512/iumj.2011.60.4490.  Google Scholar

[13]

C.-L. Lin and J.-N. Wang, Quantitative uniqueness estimates for the general second order elliptic equations, J. Func. Anal., 266 (2014), 5108–5125. doi: 10.1016/j.jfa.2014.02.016.  Google Scholar

[14]

R. Regbaoui, Strong unique continuation for Stokes equation, Comm. Partial Differential Equations, 24 (1999), 1891–1902. doi: 10.1080/03605309908821486.  Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[5]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[6]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[7]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[8]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[9]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

[10]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[11]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[12]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[13]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[14]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[15]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[16]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[17]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[18]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[19]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[20]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (35)
  • HTML views (97)
  • Cited by (0)

Other articles
by authors

[Back to Top]