May  2021, 41(5): 2341-2376. doi: 10.3934/dcds.2020367

Well-posedness of renormalized solutions for a stochastic $ p $-Laplace equation with $ L^1 $-initial data

University of Duisburg-Essen, Thea-Leymann-Strasse 9, 45127 Essen, Germany

* Corresponding author

Received  December 2019 Revised  August 2020 Published  May 2021 Early access  November 2020

We consider a $ p $-Laplace evolution problem with stochastic forcing on a bounded domain $ D\subset\mathbb{R}^d $ with homogeneous Dirichlet boundary conditions for $ 1<p<\infty $. The additive noise term is given by a stochastic integral in the sense of Itô. The technical difficulties arise from the merely integrable random initial data $ u_0 $ under consideration. Due to the poor regularity of the initial data, estimates in $ W^{1,p}_0(D) $ are available with respect to truncations of the solution only and therefore well-posedness results have to be formulated in the sense of generalized solutions. We extend the notion of renormalized solution for this type of SPDEs, show well-posedness in this setting and study the Markov properties of solutions.

Citation: Niklas Sapountzoglou, Aleksandra Zimmermann. Well-posedness of renormalized solutions for a stochastic $ p $-Laplace equation with $ L^1 $-initial data. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2341-2376. doi: 10.3934/dcds.2020367
References:
[1]

S. Attanasio and F. Flandoli, Renormalized solutions for stochastic transport equations and the regularization by bilinear multiplication noise, Comm. Partial Differential Equations, 36 (2011), 1455-1474.  doi: 10.1080/03605302.2011.585681.  Google Scholar

[2]

P. Baldi, Stochastic Calculus, An Introduction Through Theory and Exercises. Universitext, Springer, 2017. doi: 10.1007/978-3-319-62226-2.  Google Scholar

[3]

G. I. Barenblatt, Similarity, Self-Similarity, and Intermediate Asymptotics, New York, London, 1979.  Google Scholar

[4]

P. BénilanL. BoccardoT. GallouëtR. GariepyM. Pierre and J. L. Vázquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 241-273.   Google Scholar

[5]

D. Blanchard and H. Redwane, Renormalized solutions for a class of nonlinear evolution problems, J. Math. Pures Appl., 77 (1998), 117-151.  doi: 10.1016/S0021-7824(98)80067-6.  Google Scholar

[6]

D. Blanchard, Truncations and monotonicity methods for parabolic equations, Nonlinear Anal., 21 (1993), 725-743.  doi: 10.1016/0362-546X(93)90120-H.  Google Scholar

[7]

D. Blanchard and F. Murat, Renormalised solutions of nonlinear parabolic problems with $L^1$ data: Existence and uniqueness, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1137-1152.  doi: 10.1017/S0308210500026986.  Google Scholar

[8]

D. BlanchardF. Murat and H. Redwane, Existence and uniqueness of a renormalized solution of a fairly general class of nonlinear parabolic problems, Journal of Differential Equations, 177 (2001), 331-374.  doi: 10.1006/jdeq.2000.4013.  Google Scholar

[9]

D. Breit, Regularity theory for nonlinear systems of SPDEs, Manuscripta Math., 146 (2015), 329-349.  doi: 10.1007/s00229-014-0704-8.  Google Scholar

[10]

D. Breit, E. Feireisl and M. Hofmanová, Stochastically Forced Compressible Fluid Flows, De Gruyter, Berlin, 2018.  Google Scholar

[11]

P. Catuogno and C. Olivera, $L^p$-solutions of the stochastic transport equation, Random Oper. Stoch. Equ., 21 (2013), 125-134.  doi: 10.1515/rose-2013-0007.  Google Scholar

[12] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions. 2. Edition, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9780511666223.  Google Scholar
[13]

B. Delamotte, A hint of renormalization, Am. J. Phys., 72 (2004), 170-184.   Google Scholar

[14]

J. I. Diaz and F. de Thélin, On a nonlinear parabolic problem arising in some models related to turbulent flows, SIAM J. Math. Anal., 25 (1994), 1085-1111.  doi: 10.1137/S0036141091217731.  Google Scholar

[15]

R. J. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. Math., 130 (1989), 321-366.  doi: 10.2307/1971423.  Google Scholar

[16]

E. Feireisl, Dynamics of Viscous Compressible Fluids. Volume 26 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford 2004.  Google Scholar

[17]

D. Fellah and É. Pardoux, Une formule d'Itô dans des espaces de Banach, et Application, In: Körezlioǧlu H., Üstünel A.S. (eds) Stochastic Analysis and Related Topics. Progress in Probability, vol. 31. Birkhäuser, Boston, MA, 1992.  Google Scholar

[18]

B. Gess and M. Hofmanová, Well-posedness and regularity for quasilinear degenerate parabolic-hyperbolic SPDE, Ann. Probab., 46 (2018), 2495-2544.  doi: 10.1214/17-AOP1231.  Google Scholar

[19]

M. Gubinelli, P. Imkeller and N. Perkowski, Paracontrolled distributions and singular PDEs, Forum Math. Pi, 3 (2015), e6, 75 pp. doi: 10.1017/fmp.2015.2.  Google Scholar

[20]

M. Hairer, A theory of regularity structures, Invent. Math., 198 (2014), 269-504.  doi: 10.1007/s00222-014-0505-4.  Google Scholar

[21]

L. Hörmander, The Analyis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis., Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-642-61497-2.  Google Scholar

[22]

T. KomorowskiS. Peszat and T. Szarek, On ergodicity of some Markov processes, Ann. Probab., 38 (2010), 1401-1443.  doi: 10.1214/09-AOP513.  Google Scholar

[23]

N. V. Krylov and B. L. Rozovski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$, Stochastic evolution equations, J. Soviet Math., 16 (1981), 1233-1277.   Google Scholar

[24]

W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Universitext, Springer, Cham, 2015. doi: 10.1007/978-3-319-22354-4.  Google Scholar

[25]

M. Ondreját, Uniqueness for stochastic evolution equations in Banach spaces, Dissertationes Math. (Rozprawy Mat.), 426 (2004), 1-63.  doi: 10.4064/dm426-0-1.  Google Scholar

[26]

E. Pardoux, Equations aux Dérivées Partielles Stochastiques non Linéaires Monotones, University of Paris, 1975. PhD-thesis. Google Scholar

[27]

S. Punshon-Smith and S. Smith, On the Boltzmann equation with stochastic kinetic transport: Global existence of renormalized martingale solutions, Arch. Rational Mech. Anal., 229 (2018), 627-708.  doi: 10.1007/s00205-018-1225-5.  Google Scholar

[28]

G. Vallet and A. Zimmermann, Well-posedness for a pseudomonotone evolution problem with multiplicative noise, J. Evol. Equ., 19 (2019), 153-202.  doi: 10.1007/s00028-018-0472-0.  Google Scholar

[29] J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987.  doi: 10.1017/CBO9781139171755.  Google Scholar

show all references

References:
[1]

S. Attanasio and F. Flandoli, Renormalized solutions for stochastic transport equations and the regularization by bilinear multiplication noise, Comm. Partial Differential Equations, 36 (2011), 1455-1474.  doi: 10.1080/03605302.2011.585681.  Google Scholar

[2]

P. Baldi, Stochastic Calculus, An Introduction Through Theory and Exercises. Universitext, Springer, 2017. doi: 10.1007/978-3-319-62226-2.  Google Scholar

[3]

G. I. Barenblatt, Similarity, Self-Similarity, and Intermediate Asymptotics, New York, London, 1979.  Google Scholar

[4]

P. BénilanL. BoccardoT. GallouëtR. GariepyM. Pierre and J. L. Vázquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 241-273.   Google Scholar

[5]

D. Blanchard and H. Redwane, Renormalized solutions for a class of nonlinear evolution problems, J. Math. Pures Appl., 77 (1998), 117-151.  doi: 10.1016/S0021-7824(98)80067-6.  Google Scholar

[6]

D. Blanchard, Truncations and monotonicity methods for parabolic equations, Nonlinear Anal., 21 (1993), 725-743.  doi: 10.1016/0362-546X(93)90120-H.  Google Scholar

[7]

D. Blanchard and F. Murat, Renormalised solutions of nonlinear parabolic problems with $L^1$ data: Existence and uniqueness, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1137-1152.  doi: 10.1017/S0308210500026986.  Google Scholar

[8]

D. BlanchardF. Murat and H. Redwane, Existence and uniqueness of a renormalized solution of a fairly general class of nonlinear parabolic problems, Journal of Differential Equations, 177 (2001), 331-374.  doi: 10.1006/jdeq.2000.4013.  Google Scholar

[9]

D. Breit, Regularity theory for nonlinear systems of SPDEs, Manuscripta Math., 146 (2015), 329-349.  doi: 10.1007/s00229-014-0704-8.  Google Scholar

[10]

D. Breit, E. Feireisl and M. Hofmanová, Stochastically Forced Compressible Fluid Flows, De Gruyter, Berlin, 2018.  Google Scholar

[11]

P. Catuogno and C. Olivera, $L^p$-solutions of the stochastic transport equation, Random Oper. Stoch. Equ., 21 (2013), 125-134.  doi: 10.1515/rose-2013-0007.  Google Scholar

[12] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions. 2. Edition, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9780511666223.  Google Scholar
[13]

B. Delamotte, A hint of renormalization, Am. J. Phys., 72 (2004), 170-184.   Google Scholar

[14]

J. I. Diaz and F. de Thélin, On a nonlinear parabolic problem arising in some models related to turbulent flows, SIAM J. Math. Anal., 25 (1994), 1085-1111.  doi: 10.1137/S0036141091217731.  Google Scholar

[15]

R. J. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. Math., 130 (1989), 321-366.  doi: 10.2307/1971423.  Google Scholar

[16]

E. Feireisl, Dynamics of Viscous Compressible Fluids. Volume 26 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford 2004.  Google Scholar

[17]

D. Fellah and É. Pardoux, Une formule d'Itô dans des espaces de Banach, et Application, In: Körezlioǧlu H., Üstünel A.S. (eds) Stochastic Analysis and Related Topics. Progress in Probability, vol. 31. Birkhäuser, Boston, MA, 1992.  Google Scholar

[18]

B. Gess and M. Hofmanová, Well-posedness and regularity for quasilinear degenerate parabolic-hyperbolic SPDE, Ann. Probab., 46 (2018), 2495-2544.  doi: 10.1214/17-AOP1231.  Google Scholar

[19]

M. Gubinelli, P. Imkeller and N. Perkowski, Paracontrolled distributions and singular PDEs, Forum Math. Pi, 3 (2015), e6, 75 pp. doi: 10.1017/fmp.2015.2.  Google Scholar

[20]

M. Hairer, A theory of regularity structures, Invent. Math., 198 (2014), 269-504.  doi: 10.1007/s00222-014-0505-4.  Google Scholar

[21]

L. Hörmander, The Analyis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis., Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-642-61497-2.  Google Scholar

[22]

T. KomorowskiS. Peszat and T. Szarek, On ergodicity of some Markov processes, Ann. Probab., 38 (2010), 1401-1443.  doi: 10.1214/09-AOP513.  Google Scholar

[23]

N. V. Krylov and B. L. Rozovski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$, Stochastic evolution equations, J. Soviet Math., 16 (1981), 1233-1277.   Google Scholar

[24]

W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Universitext, Springer, Cham, 2015. doi: 10.1007/978-3-319-22354-4.  Google Scholar

[25]

M. Ondreját, Uniqueness for stochastic evolution equations in Banach spaces, Dissertationes Math. (Rozprawy Mat.), 426 (2004), 1-63.  doi: 10.4064/dm426-0-1.  Google Scholar

[26]

E. Pardoux, Equations aux Dérivées Partielles Stochastiques non Linéaires Monotones, University of Paris, 1975. PhD-thesis. Google Scholar

[27]

S. Punshon-Smith and S. Smith, On the Boltzmann equation with stochastic kinetic transport: Global existence of renormalized martingale solutions, Arch. Rational Mech. Anal., 229 (2018), 627-708.  doi: 10.1007/s00205-018-1225-5.  Google Scholar

[28]

G. Vallet and A. Zimmermann, Well-posedness for a pseudomonotone evolution problem with multiplicative noise, J. Evol. Equ., 19 (2019), 153-202.  doi: 10.1007/s00028-018-0472-0.  Google Scholar

[29] J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987.  doi: 10.1017/CBO9781139171755.  Google Scholar
[1]

Arrigo Cellina. The regularity of solutions to some variational problems, including the p-Laplace equation for 3≤p < 4. Discrete & Continuous Dynamical Systems, 2018, 38 (8) : 4071-4085. doi: 10.3934/dcds.2018177

[2]

Manas Kar, Jenn-Nan Wang. Size estimates for the weighted p-Laplace equation with one measurement. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 2011-2024. doi: 10.3934/dcdsb.2020188

[3]

Ryuji Kajikiya. Nonradial least energy solutions of the p-Laplace elliptic equations. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 547-561. doi: 10.3934/dcds.2018024

[4]

Joachim Naumann. On the existence of weak solutions of an unsteady p-Laplace thermistor system with strictly monotone electrical conductivities. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 837-852. doi: 10.3934/dcdss.2017042

[5]

Antonio Greco, Giovanni Porru. Optimization problems for the energy integral of p-Laplace equations. Conference Publications, 2013, 2013 (special) : 301-310. doi: 10.3934/proc.2013.2013.301

[6]

Yangrong Li, Jinyan Yin. Existence, regularity and approximation of global attractors for weakly dissipative p-Laplace equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1939-1957. doi: 10.3934/dcdss.2016079

[7]

Mikhail D. Surnachev, Vasily V. Zhikov. On existence and uniqueness classes for the Cauchy problem for parabolic equations of the p-Laplace type. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1783-1812. doi: 10.3934/cpaa.2013.12.1783

[8]

Manil T. Mohan, Sivaguru S. Sritharan. $\mathbb{L}^p-$solutions of the stochastic Navier-Stokes equations subject to Lévy noise with $\mathbb{L}^m(\mathbb{R}^m)$ initial data. Evolution Equations & Control Theory, 2017, 6 (3) : 409-425. doi: 10.3934/eect.2017021

[9]

Michael Röckner, Rongchan Zhu, Xiangchan Zhu. A remark on global solutions to random 3D vorticity equations for small initial data. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4021-4030. doi: 10.3934/dcdsb.2019048

[10]

Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the heat equation with concave-convex nonlinearity and initial data in weak-$L^p$ spaces. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1715-1732. doi: 10.3934/cpaa.2011.10.1715

[11]

Chao Zhang, Xia Zhang, Shulin Zhou. Gradient estimates for the strong $p(x)$-Laplace equation. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 4109-4129. doi: 10.3934/dcds.2017175

[12]

Mostafa Bendahmane, Kenneth H. Karlsen. Renormalized solutions of an anisotropic reaction-diffusion-advection system with $L^1$ data. Communications on Pure & Applied Analysis, 2006, 5 (4) : 733-762. doi: 10.3934/cpaa.2006.5.733

[13]

Bin Guo, Wenjie Gao. Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the $p(x,t)-Laplace$ operator and a non-local term. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 715-730. doi: 10.3934/dcds.2016.36.715

[14]

Roberto Camassa. Characteristics and the initial value problem of a completely integrable shallow water equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 115-139. doi: 10.3934/dcdsb.2003.3.115

[15]

Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021107

[16]

Carey Caginalp. A survey of results on conservation laws with deterministic and random initial data. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2043-2069. doi: 10.3934/dcdsb.2018225

[17]

Katrin Grunert, Helge Holden, Xavier Raynaud. Global conservative solutions to the Camassa--Holm equation for initial data with nonvanishing asymptotics. Discrete & Continuous Dynamical Systems, 2012, 32 (12) : 4209-4227. doi: 10.3934/dcds.2012.32.4209

[18]

Zheng Zhou. Layered solutions in $R^2$ for a class of $p$-Laplace equations. Communications on Pure & Applied Analysis, 2010, 9 (3) : 819-837. doi: 10.3934/cpaa.2010.9.819

[19]

Yutian Lei, Congming Li, Chao Ma. Decay estimation for positive solutions of a $\gamma$-Laplace equation. Discrete & Continuous Dynamical Systems, 2011, 30 (2) : 547-558. doi: 10.3934/dcds.2011.30.547

[20]

Yannick Privat, Emmanuel Trélat, Enrique Zuazua. Complexity and regularity of maximal energy domains for the wave equation with fixed initial data. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 6133-6153. doi: 10.3934/dcds.2015.35.6133

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (159)
  • HTML views (169)
  • Cited by (0)

Other articles
by authors

[Back to Top]