doi: 10.3934/dcds.2020368

On the vanishing discount problem from the negative direction

1. 

Dip. di Matematica, Sapienza Università di Roma, P.le Aldo Moro 2, 00185 Roma, Italy

2. 

Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China

Received  January 2020 Revised  July 2020 Published  November 2020

It has been proved in [7] that the unique viscosity solution of
$ \begin{equation} \lambda u_\lambda+H(x,d_x u_\lambda) = c(H)\qquad\hbox{in $M$}, \;\;\;\;\;\;\;\;\;(*)\end{equation} $
uniformly converges, for
$ \lambda\rightarrow 0^+ $
, to a specific solution
$ u_0 $
of the critical equation
$ H(x,d_x u) = c(H)\qquad\hbox{in $M$}, $
where
$ M $
is a closed and connected Riemannian manifold and
$ c(H) $
is the critical value. In this note, we consider the same problem for
$ \lambda\rightarrow 0^- $
. In this case, viscosity solutions of equation (*) are not unique, in general, so we focus on the asymptotics of the minimal solution
$ u_\lambda^- $
of (*). Under the assumption that constant functions are subsolutions of the critical equation, we prove that the
$ u_\lambda^- $
also converges to
$ u_0 $
as
$ \lambda\rightarrow 0^- $
. Furthermore, we exhibit an example of
$ H $
for which equation (*) admits a unique solution for
$ \lambda<0 $
as well.
Citation: Andrea Davini, Lin Wang. On the vanishing discount problem from the negative direction. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020368
References:
[1]

G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, vol. 17 of Mathématiques & Applications (Berlin) [Mathematics & Applications], Springer-Verlag, Paris, 1994.  Google Scholar

[2]

P. Bernard, Existence of $C^{1, 1}$ critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds, Ann. Sci. École Norm. Sup., 40 (2007), 445-452.  doi: 10.1016/j.ansens.2007.01.004.  Google Scholar

[3]

P. Bernard, Smooth critical sub-solutions of the Hamilton-Jacobi equation, Math. Res. Lett., 14 (2007), 503-511.  doi: 10.4310/MRL.2007.v14.n3.a14.  Google Scholar

[4]

P. Cannarsa and H. M. Soner, Generalized one-sided estimates for solutions of Hamilton-Jacobi equations and applications, Nonlinear Anal., 13 (1989), 305-323.  doi: 10.1016/0362-546X(89)90056-4.  Google Scholar

[5]

F. H. Clarke, Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons Inc., New York, 1983.  Google Scholar

[6]

G. ContrerasR. IturriagaG. P. Paternain and M. Paternain, Lagrangian graphs, minimizing measures and Mañé's critical values, Geom. Funct. Anal., 8 (1998), 788-809.  doi: 10.1007/s000390050074.  Google Scholar

[7]

A. DaviniA. FathiR. Iturriaga and M. Zavidovique, Convergence of the solutions of the discounted Hamilton-Jacobi equation: Convergence of the discounted solutions, Invent. Math., 206 (2016), 29-55.  doi: 10.1007/s00222-016-0648-6.  Google Scholar

[8]

A. Fathi, Weak KAM Theorem in Lagrangian Dynamics, Preliminary version 10, Lyon, unpublished, June 15, 2008. Google Scholar

[9]

A. Fathi and A. Siconolfi, Existence of $C^1$ critical subsolutions of the Hamilton-Jacobi equation, Invent. Math., 155 (2004), 363-388.  doi: 10.1007/s00222-003-0323-6.  Google Scholar

[10]

N. Kryloff and N. Bogoliuboff, La théorie générale de la mesure et son application à l'étude des systèmes dynamiques de la mécanique non linéaire, Ann. of Math., 38 (1937), 65-113.  doi: 10.2307/1968511.  Google Scholar

[11]

S. Marò and A. Sorrentino, Aubry-Mather theory for conformally symplectic systems, Comm. Math. Phys., 354 (2017), 775-808.  doi: 10.1007/s00220-017-2900-3.  Google Scholar

[12]

A. Siconolfi, Hamilton-Jacobi equations and weak KAM theory, in Mathematics of Complexity and Dynamical Systems, Vols. 1–3, Springer, New York, (2012), 683–703. doi: 10.1007/978-1-4614-1806-1_42.  Google Scholar

[13]

K. WangL. Wang and J. Yan, Implicit variational principle for contact Hamiltonian systems, Nonlinearity, 30 (2017), 492-515.  doi: 10.1088/1361-6544/30/2/492.  Google Scholar

[14]

K. WangL. Wang and J. Yan, Aubry-Mather theory for contact Hamiltonian systems, Comm. Math. Phys., 366 (2019), 981-1023.  doi: 10.1007/s00220-019-03362-2.  Google Scholar

[15]

K. WangL. Wang and J. Yan, Variational principle for contact Hamiltonian systems and its applications, J. Math. Pures Appl., 123 (2019), 167-200.  doi: 10.1016/j.matpur.2018.08.011.  Google Scholar

show all references

References:
[1]

G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, vol. 17 of Mathématiques & Applications (Berlin) [Mathematics & Applications], Springer-Verlag, Paris, 1994.  Google Scholar

[2]

P. Bernard, Existence of $C^{1, 1}$ critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds, Ann. Sci. École Norm. Sup., 40 (2007), 445-452.  doi: 10.1016/j.ansens.2007.01.004.  Google Scholar

[3]

P. Bernard, Smooth critical sub-solutions of the Hamilton-Jacobi equation, Math. Res. Lett., 14 (2007), 503-511.  doi: 10.4310/MRL.2007.v14.n3.a14.  Google Scholar

[4]

P. Cannarsa and H. M. Soner, Generalized one-sided estimates for solutions of Hamilton-Jacobi equations and applications, Nonlinear Anal., 13 (1989), 305-323.  doi: 10.1016/0362-546X(89)90056-4.  Google Scholar

[5]

F. H. Clarke, Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons Inc., New York, 1983.  Google Scholar

[6]

G. ContrerasR. IturriagaG. P. Paternain and M. Paternain, Lagrangian graphs, minimizing measures and Mañé's critical values, Geom. Funct. Anal., 8 (1998), 788-809.  doi: 10.1007/s000390050074.  Google Scholar

[7]

A. DaviniA. FathiR. Iturriaga and M. Zavidovique, Convergence of the solutions of the discounted Hamilton-Jacobi equation: Convergence of the discounted solutions, Invent. Math., 206 (2016), 29-55.  doi: 10.1007/s00222-016-0648-6.  Google Scholar

[8]

A. Fathi, Weak KAM Theorem in Lagrangian Dynamics, Preliminary version 10, Lyon, unpublished, June 15, 2008. Google Scholar

[9]

A. Fathi and A. Siconolfi, Existence of $C^1$ critical subsolutions of the Hamilton-Jacobi equation, Invent. Math., 155 (2004), 363-388.  doi: 10.1007/s00222-003-0323-6.  Google Scholar

[10]

N. Kryloff and N. Bogoliuboff, La théorie générale de la mesure et son application à l'étude des systèmes dynamiques de la mécanique non linéaire, Ann. of Math., 38 (1937), 65-113.  doi: 10.2307/1968511.  Google Scholar

[11]

S. Marò and A. Sorrentino, Aubry-Mather theory for conformally symplectic systems, Comm. Math. Phys., 354 (2017), 775-808.  doi: 10.1007/s00220-017-2900-3.  Google Scholar

[12]

A. Siconolfi, Hamilton-Jacobi equations and weak KAM theory, in Mathematics of Complexity and Dynamical Systems, Vols. 1–3, Springer, New York, (2012), 683–703. doi: 10.1007/978-1-4614-1806-1_42.  Google Scholar

[13]

K. WangL. Wang and J. Yan, Implicit variational principle for contact Hamiltonian systems, Nonlinearity, 30 (2017), 492-515.  doi: 10.1088/1361-6544/30/2/492.  Google Scholar

[14]

K. WangL. Wang and J. Yan, Aubry-Mather theory for contact Hamiltonian systems, Comm. Math. Phys., 366 (2019), 981-1023.  doi: 10.1007/s00220-019-03362-2.  Google Scholar

[15]

K. WangL. Wang and J. Yan, Variational principle for contact Hamiltonian systems and its applications, J. Math. Pures Appl., 123 (2019), 167-200.  doi: 10.1016/j.matpur.2018.08.011.  Google Scholar

[1]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021007

[2]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[3]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[4]

Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020392

[5]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[6]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298

[7]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[8]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[9]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[10]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[11]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[12]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[13]

Ágota P. Horváth. Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021002

[14]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

[15]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[16]

Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021007

[17]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[18]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[19]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[20]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (25)
  • HTML views (95)
  • Cited by (0)

Other articles
by authors

[Back to Top]