• Previous Article
    Second order estimates for complex Hessian equations on Hermitian manifolds
  • DCDS Home
  • This Issue
  • Next Article
    Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems
June  2021, 41(6): 2601-2617. doi: 10.3934/dcds.2020376

A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation

Departamento de Matemática Aplicada and Excellence Research Unit "Modeling Nature" (MNat), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

Received  March 2020 Revised  September 2020 Published  November 2020

Fund Project: The author is partially supported by the MINECO-Feder (Spain) research grant number RTI2018-098850-B-I00, as well as by the Junta de Andalucía (Spain) Project PY18-RT-2422 & A-FQM-311-UGR18

The parabolic-parabolic Keller-Segel model of chemotaxis is shown to come up as the hydrodynamic system describing the evolution of the modulus square $ n(t,x) $ and the argument $ S(t,x) $ of a wavefunction $ \psi = \sqrt{n} \, e^{iS} $ that solves a cubic Schrödinger equation with focusing interaction, frictional Kostin nonlinearity and Doebner-Goldin dissipation mechanism. This connection is then exploited to construct a family of quasi-stationary solutions to the Keller-Segel system under the influence of no-flux and anti-Fick laws.

Citation: José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376
References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

F. AndreuV. CasellesJ. M. Mazón and S. Moll, Finite propagation speed for limited flux diffusion equations, Arch. Rat. Mech. Anal., 182 (2006), 269-297.  doi: 10.1007/s00205-006-0428-3.  Google Scholar

[3]

M. AriasJ. Campos and J. Soler, Cross-diffusion and traveling waves in porous-media flux-saturated Keller-Segel models, Math. Models Meth. Appl. Sci., 28 (2018), 2103-2129.  doi: 10.1142/S0218202518400092.  Google Scholar

[4]

G. Auberson and P. C. Sabatier, On a class of homogeneous nonlinear Schrödinger equations, J. Math. Phys., 35 (1994), 4028-4040.  doi: 10.1063/1.530840.  Google Scholar

[5]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Meth. Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.  Google Scholar

[6]

N. Bellomo and M. Winkler, A degenerate chemotaxis system with flux limitation: Maximally extended solutions and absence of gradient blow-up, Comm. PDE, 42 (2017), 436-473.  doi: 10.1080/03605302.2016.1277237.  Google Scholar

[7]

A. BellouquidJ. Nieto and L. Urrutia, About the kinetic description of fractional diffusion equations modeling chemotaxis, Math. Models Meth. Appl. Sci., 26 (2016), 249-268.  doi: 10.1142/S0218202516400029.  Google Scholar

[8]

L. Bergé, Wave collapse in physics: Principles and applications to light and plasma waves, Phys. Rep., 303 (1998), 259-370.  doi: 10.1016/S0370-1573(97)00092-6.  Google Scholar

[9]

I. Bialynicki–Birula and J. Mycielski, Nonlinear wave mechanics, Ann. Phys., 100 (1976), 62-93.  doi: 10.1016/0003-4916(76)90057-9.  Google Scholar

[10]

A. Blanchet, On the Parabolic-elliptic Patlak-Keller-Segel System in Dimension $2$ and Higher, Séminaire Laurent Schwartz–EDP et applications, Exposé n. Ⅷ, Palaiseau, 2013.  Google Scholar

[11]

N. Bournaveas and V. Calvez, The one-dimensional Keller-Segel model with fractional diffusion of cells, Nonlinearity, 23 (2010), 923-935.  doi: 10.1088/0951-7715/23/4/009.  Google Scholar

[12]

A. O. Caldeira and A. J. Leggett, Path integral approach to quantum Brownian motion, Physica A, 121 (1983), 587-616.  doi: 10.1016/0378-4371(83)90013-4.  Google Scholar

[13]

J. Calvo, J. Campos, V. Caselles, O. Sánchez and J. Soler, Flux-saturated porous media equation and applications, JEMS Surveys in Mathematical Sciences 2 (2015), 131–218. doi: 10.4171/EMSS/11.  Google Scholar

[14]

V. CalvezL. Corrias and M. A. Ebde, Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension, Comm. PDE, 37 (2012), 561-584.  doi: 10.1080/03605302.2012.655824.  Google Scholar

[15]

V. CalvezB. Perthame and S. Yasuda, Traveling wave and aggregation in a flux-limited Keller-Segel model, Kinetic & Related Models, 11 (2018), 891-909.  doi: 10.3934/krm.2018035.  Google Scholar

[16]

M. A. J. Chaplain and J. I. Tello, On the stability of homogeneous steady states of a chemotaxis system with logistic growth term, Appl. Math. Lett., 57 (2016), 1-6.  doi: 10.1016/j.aml.2015.12.001.  Google Scholar

[17]

W. Chen and J. Dávila, Resonance phenomenon for a Gelfand-type problem, Nonlinear Anal., 89 (2013), 299-321.  doi: 10.1016/j.na.2013.05.008.  Google Scholar

[18]

A. ChertockA. KurganovX. Wang and Y. Wu, On a chemotaxis model with saturated chemotactic flux, Kinetic & Related Models, 5 (2012), 51-95.  doi: 10.3934/krm.2012.5.51.  Google Scholar

[19]

M. del Pino and J. Wei, Collapsing steady states of the Keller-Segel system, Nonlinearity, 19 (2006), 661-684.  doi: 10.1088/0951-7715/19/3/007.  Google Scholar

[20]

H. D. Doebner and G. A. Goldin, On a general nonlinear Schrödinger equation admitting diffusion currents, Phys. Lett. A, 162 (1992), 397-401.  doi: 10.1016/0375-9601(92)90061-P.  Google Scholar

[21]

S. A. DyachenkoP. M. Lushnikov and N. Vladimirova, Logarithmic scaling of the collapse in the critical Keller-Segel equation, Nonlinearity, 26 (2013), 3011-3041.  doi: 10.1088/0951-7715/26/11/3011.  Google Scholar

[22]

C. Escudero, The fractional Keller-Segel model, Nonlinearity, 19 (2006), 2909-2918.  doi: 10.1088/0951-7715/19/12/010.  Google Scholar

[23]

H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114.  doi: 10.1002/mana.19981950106.  Google Scholar

[24]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[25]

P. GuerreroJ. L. LópezJ. Montejo–Gámez and J. Nieto, Wellposedness of a nonlinear, logarithmic Schrödinger equation of Doebner–Goldin type modeling quantum dissipation, J. Nonlinear Sci., 22 (2012), 631-663.  doi: 10.1007/s00332-012-9123-8.  Google Scholar

[26]

Y. Huang and A. Bertozzi, Self-similar blowup solutions to an aggregation equation in $\mathbb{R}^N$, SIAM J. Appl. Math., 70 (2010), 2582-2603.  doi: 10.1137/090774495.  Google Scholar

[27]

Y. Kabeya and W.-M. Ni, Stationary Keller-Segel model with the linear sensitivity, S${\bar{u}}$rikaisekikenky${\bar{u}}$sho K${\bar{o}}$ky${\bar{u}}$roku, 1025 (1998), 44–65. Variational problems and related topics (Kyoto, 1997)  Google Scholar

[28]

J. L. Kazdan and F. W. Warner, Curvature functions for compact 2-manifolds, Ann. Math., 99 (1974), 14-47.  doi: 10.2307/1971012.  Google Scholar

[29]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 235-248.  doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[30]

M. D. Kostin, On the Schrödinger–Langevin equation, J. Stat. Phys., 12 (1975), 145-151.  doi: 10.1063/1.1678812.  Google Scholar

[31]

C.-S. LinW.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Diff. Equ., 72 (1988), 1-27.  doi: 10.1016/0022-0396(88)90147-7.  Google Scholar

[32]

D. Liu, Global solutions in a fully parabolic chemotaxis system with singular sensitivity and nonlinear signal production, J. Math. Phys., 61 (2020), 021503, 4pp. doi: 10.1063/1.5111650.  Google Scholar

[33]

D. Liu and Y. Tao, Boundedness in a chemotaxis system with nonlinear signal production, Appl. Math. J. Chinese Univ., 31 (2016), 379-388.  doi: 10.1007/s11766-016-3386-z.  Google Scholar

[34]

J. L. López, Nonlinear Ginzburg–Landau–type approach to quantum dissipation, Phys. Rev. E., 69 (2004), 026110. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.69.026110. Google Scholar

[35]

J. L. López and J. Montejo-Gámez, A hydrodynamic approach to multidimensional dissipation–based Schrödinger models from quantum Fokker–Planck dynamics, Phys. D, 238 (2009), 622-644.  doi: 10.1016/j.physd.2008.12.006.  Google Scholar

[36]

J. L. López and J. Montejo-Gámez, On a rigorous interpretation of the quantum Schrödinger-Langevin operator in bounded domains, J. Math. Anal. Appl., 383 (2011), 365-378.  doi: 10.1016/j.jmaa.2011.05.024.  Google Scholar

[37]

P. M. Lushnikov, Critical chemotactic collapse., Phys. Lett. A, 374 (2010), 1678-1685.  doi: 10.1016/j.physleta.2010.01.068.  Google Scholar

[38]

B. Perthame, Transport Equations in Biology, Springer, 2007. https://www.springer.com/gp/book/9783764378417.  Google Scholar

[39]

B. PerthameN. Vauchelet and Z. Wang, The flux-limited Keller-Segel system; properties and derivation from kinetic equtions, Rev. Mat. Iberoamericana, 36 (2020), 357-386.  doi: 10.4171/rmi/1132.  Google Scholar

[40]

A. L. Sanin and A. A. Smirnovsky, Oscillatory motion in confined potential systems with dissipation in the context of the Schrödinger-Langevin-Kostin equation, Phys. Lett. A, 372 (2007), 21-27.  doi: 10.1016/j.physleta.2007.07.019.  Google Scholar

[41]

R. Schaaf, Stationary solutions of chemotaxis systems, Trans. Amer. Math. Soc., 292 (1985), 531-556.  doi: 10.1090/S0002-9947-1985-0808736-1.  Google Scholar

[42]

G. Wang and J. Wei, Steady state solutions of a reaction-diffusion system modeling chemotaxis, Math. Nachr., 233/234 (2002), 221-236.  doi: 10.1002/1522-2616(200201)233:1<221::AID-MANA221>3.0.CO;2-M.  Google Scholar

[43]

M. ZhuangW. Wang and S. Zheng, Boundedness in a fully parabolic chemotaxis system with logistic-type source and nonlinear production, Nonlinear Anal. RWA, 47 (2019), 473-483.  doi: 10.1016/j.nonrwa.2018.12.001.  Google Scholar

show all references

References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

F. AndreuV. CasellesJ. M. Mazón and S. Moll, Finite propagation speed for limited flux diffusion equations, Arch. Rat. Mech. Anal., 182 (2006), 269-297.  doi: 10.1007/s00205-006-0428-3.  Google Scholar

[3]

M. AriasJ. Campos and J. Soler, Cross-diffusion and traveling waves in porous-media flux-saturated Keller-Segel models, Math. Models Meth. Appl. Sci., 28 (2018), 2103-2129.  doi: 10.1142/S0218202518400092.  Google Scholar

[4]

G. Auberson and P. C. Sabatier, On a class of homogeneous nonlinear Schrödinger equations, J. Math. Phys., 35 (1994), 4028-4040.  doi: 10.1063/1.530840.  Google Scholar

[5]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Meth. Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.  Google Scholar

[6]

N. Bellomo and M. Winkler, A degenerate chemotaxis system with flux limitation: Maximally extended solutions and absence of gradient blow-up, Comm. PDE, 42 (2017), 436-473.  doi: 10.1080/03605302.2016.1277237.  Google Scholar

[7]

A. BellouquidJ. Nieto and L. Urrutia, About the kinetic description of fractional diffusion equations modeling chemotaxis, Math. Models Meth. Appl. Sci., 26 (2016), 249-268.  doi: 10.1142/S0218202516400029.  Google Scholar

[8]

L. Bergé, Wave collapse in physics: Principles and applications to light and plasma waves, Phys. Rep., 303 (1998), 259-370.  doi: 10.1016/S0370-1573(97)00092-6.  Google Scholar

[9]

I. Bialynicki–Birula and J. Mycielski, Nonlinear wave mechanics, Ann. Phys., 100 (1976), 62-93.  doi: 10.1016/0003-4916(76)90057-9.  Google Scholar

[10]

A. Blanchet, On the Parabolic-elliptic Patlak-Keller-Segel System in Dimension $2$ and Higher, Séminaire Laurent Schwartz–EDP et applications, Exposé n. Ⅷ, Palaiseau, 2013.  Google Scholar

[11]

N. Bournaveas and V. Calvez, The one-dimensional Keller-Segel model with fractional diffusion of cells, Nonlinearity, 23 (2010), 923-935.  doi: 10.1088/0951-7715/23/4/009.  Google Scholar

[12]

A. O. Caldeira and A. J. Leggett, Path integral approach to quantum Brownian motion, Physica A, 121 (1983), 587-616.  doi: 10.1016/0378-4371(83)90013-4.  Google Scholar

[13]

J. Calvo, J. Campos, V. Caselles, O. Sánchez and J. Soler, Flux-saturated porous media equation and applications, JEMS Surveys in Mathematical Sciences 2 (2015), 131–218. doi: 10.4171/EMSS/11.  Google Scholar

[14]

V. CalvezL. Corrias and M. A. Ebde, Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension, Comm. PDE, 37 (2012), 561-584.  doi: 10.1080/03605302.2012.655824.  Google Scholar

[15]

V. CalvezB. Perthame and S. Yasuda, Traveling wave and aggregation in a flux-limited Keller-Segel model, Kinetic & Related Models, 11 (2018), 891-909.  doi: 10.3934/krm.2018035.  Google Scholar

[16]

M. A. J. Chaplain and J. I. Tello, On the stability of homogeneous steady states of a chemotaxis system with logistic growth term, Appl. Math. Lett., 57 (2016), 1-6.  doi: 10.1016/j.aml.2015.12.001.  Google Scholar

[17]

W. Chen and J. Dávila, Resonance phenomenon for a Gelfand-type problem, Nonlinear Anal., 89 (2013), 299-321.  doi: 10.1016/j.na.2013.05.008.  Google Scholar

[18]

A. ChertockA. KurganovX. Wang and Y. Wu, On a chemotaxis model with saturated chemotactic flux, Kinetic & Related Models, 5 (2012), 51-95.  doi: 10.3934/krm.2012.5.51.  Google Scholar

[19]

M. del Pino and J. Wei, Collapsing steady states of the Keller-Segel system, Nonlinearity, 19 (2006), 661-684.  doi: 10.1088/0951-7715/19/3/007.  Google Scholar

[20]

H. D. Doebner and G. A. Goldin, On a general nonlinear Schrödinger equation admitting diffusion currents, Phys. Lett. A, 162 (1992), 397-401.  doi: 10.1016/0375-9601(92)90061-P.  Google Scholar

[21]

S. A. DyachenkoP. M. Lushnikov and N. Vladimirova, Logarithmic scaling of the collapse in the critical Keller-Segel equation, Nonlinearity, 26 (2013), 3011-3041.  doi: 10.1088/0951-7715/26/11/3011.  Google Scholar

[22]

C. Escudero, The fractional Keller-Segel model, Nonlinearity, 19 (2006), 2909-2918.  doi: 10.1088/0951-7715/19/12/010.  Google Scholar

[23]

H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114.  doi: 10.1002/mana.19981950106.  Google Scholar

[24]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[25]

P. GuerreroJ. L. LópezJ. Montejo–Gámez and J. Nieto, Wellposedness of a nonlinear, logarithmic Schrödinger equation of Doebner–Goldin type modeling quantum dissipation, J. Nonlinear Sci., 22 (2012), 631-663.  doi: 10.1007/s00332-012-9123-8.  Google Scholar

[26]

Y. Huang and A. Bertozzi, Self-similar blowup solutions to an aggregation equation in $\mathbb{R}^N$, SIAM J. Appl. Math., 70 (2010), 2582-2603.  doi: 10.1137/090774495.  Google Scholar

[27]

Y. Kabeya and W.-M. Ni, Stationary Keller-Segel model with the linear sensitivity, S${\bar{u}}$rikaisekikenky${\bar{u}}$sho K${\bar{o}}$ky${\bar{u}}$roku, 1025 (1998), 44–65. Variational problems and related topics (Kyoto, 1997)  Google Scholar

[28]

J. L. Kazdan and F. W. Warner, Curvature functions for compact 2-manifolds, Ann. Math., 99 (1974), 14-47.  doi: 10.2307/1971012.  Google Scholar

[29]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 235-248.  doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[30]

M. D. Kostin, On the Schrödinger–Langevin equation, J. Stat. Phys., 12 (1975), 145-151.  doi: 10.1063/1.1678812.  Google Scholar

[31]

C.-S. LinW.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Diff. Equ., 72 (1988), 1-27.  doi: 10.1016/0022-0396(88)90147-7.  Google Scholar

[32]

D. Liu, Global solutions in a fully parabolic chemotaxis system with singular sensitivity and nonlinear signal production, J. Math. Phys., 61 (2020), 021503, 4pp. doi: 10.1063/1.5111650.  Google Scholar

[33]

D. Liu and Y. Tao, Boundedness in a chemotaxis system with nonlinear signal production, Appl. Math. J. Chinese Univ., 31 (2016), 379-388.  doi: 10.1007/s11766-016-3386-z.  Google Scholar

[34]

J. L. López, Nonlinear Ginzburg–Landau–type approach to quantum dissipation, Phys. Rev. E., 69 (2004), 026110. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.69.026110. Google Scholar

[35]

J. L. López and J. Montejo-Gámez, A hydrodynamic approach to multidimensional dissipation–based Schrödinger models from quantum Fokker–Planck dynamics, Phys. D, 238 (2009), 622-644.  doi: 10.1016/j.physd.2008.12.006.  Google Scholar

[36]

J. L. López and J. Montejo-Gámez, On a rigorous interpretation of the quantum Schrödinger-Langevin operator in bounded domains, J. Math. Anal. Appl., 383 (2011), 365-378.  doi: 10.1016/j.jmaa.2011.05.024.  Google Scholar

[37]

P. M. Lushnikov, Critical chemotactic collapse., Phys. Lett. A, 374 (2010), 1678-1685.  doi: 10.1016/j.physleta.2010.01.068.  Google Scholar

[38]

B. Perthame, Transport Equations in Biology, Springer, 2007. https://www.springer.com/gp/book/9783764378417.  Google Scholar

[39]

B. PerthameN. Vauchelet and Z. Wang, The flux-limited Keller-Segel system; properties and derivation from kinetic equtions, Rev. Mat. Iberoamericana, 36 (2020), 357-386.  doi: 10.4171/rmi/1132.  Google Scholar

[40]

A. L. Sanin and A. A. Smirnovsky, Oscillatory motion in confined potential systems with dissipation in the context of the Schrödinger-Langevin-Kostin equation, Phys. Lett. A, 372 (2007), 21-27.  doi: 10.1016/j.physleta.2007.07.019.  Google Scholar

[41]

R. Schaaf, Stationary solutions of chemotaxis systems, Trans. Amer. Math. Soc., 292 (1985), 531-556.  doi: 10.1090/S0002-9947-1985-0808736-1.  Google Scholar

[42]

G. Wang and J. Wei, Steady state solutions of a reaction-diffusion system modeling chemotaxis, Math. Nachr., 233/234 (2002), 221-236.  doi: 10.1002/1522-2616(200201)233:1<221::AID-MANA221>3.0.CO;2-M.  Google Scholar

[43]

M. ZhuangW. Wang and S. Zheng, Boundedness in a fully parabolic chemotaxis system with logistic-type source and nonlinear production, Nonlinear Anal. RWA, 47 (2019), 473-483.  doi: 10.1016/j.nonrwa.2018.12.001.  Google Scholar

[1]

José Luis López, Jesús Montejo-Gámez. On viscous quantum hydrodynamics associated with nonlinear Schrödinger-Doebner-Goldin models. Kinetic & Related Models, 2012, 5 (3) : 517-536. doi: 10.3934/krm.2012.5.517

[2]

Luca Battaglia. A general existence result for stationary solutions to the Keller-Segel system. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 905-926. doi: 10.3934/dcds.2019038

[3]

Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078

[4]

Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317

[5]

Kei Nakamura, Tohru Ozawa. Finite charge solutions to cubic Schrödinger equations with a nonlocal nonlinearity in one space dimension. Discrete & Continuous Dynamical Systems, 2013, 33 (2) : 789-801. doi: 10.3934/dcds.2013.33.789

[6]

Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613

[7]

Tohru Tsujikawa, Kousuke Kuto, Yasuhito Miyamoto, Hirofumi Izuhara. Stationary solutions for some shadow system of the Keller-Segel model with logistic growth. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 1023-1034. doi: 10.3934/dcdss.2015.8.1023

[8]

Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231

[9]

J. Cuevas, J. C. Eilbeck, N. I. Karachalios. Thresholds for breather solutions of the discrete nonlinear Schrödinger equation with saturable and power nonlinearity. Discrete & Continuous Dynamical Systems, 2008, 21 (2) : 445-475. doi: 10.3934/dcds.2008.21.445

[10]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021031

[11]

Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102

[12]

Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 831-850. doi: 10.3934/cpaa.2013.12.831

[13]

Kenneth H. Karlsen, Süleyman Ulusoy. On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks & Heterogeneous Media, 2016, 11 (1) : 181-201. doi: 10.3934/nhm.2016.11.181

[14]

Xie Li, Zhaoyin Xiang. Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3503-3531. doi: 10.3934/dcds.2015.35.3503

[15]

Pascal Bégout, Jesús Ildefonso Díaz. A sharper energy method for the localization of the support to some stationary Schrödinger equations with a singular nonlinearity. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 3371-3382. doi: 10.3934/dcds.2014.34.3371

[16]

Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations & Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016

[17]

Nakao Hayashi, Tohru Ozawa. Schrödinger equations with nonlinearity of integral type. Discrete & Continuous Dynamical Systems, 1995, 1 (4) : 475-484. doi: 10.3934/dcds.1995.1.475

[18]

Jibin Li, Yan Zhou. Bifurcations and exact traveling wave solutions for the nonlinear Schrödinger equation with fourth-order dispersion and dual power law nonlinearity. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3083-3097. doi: 10.3934/dcdss.2020113

[19]

Marco Di Francesco, Donatella Donatelli. Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 79-100. doi: 10.3934/dcdsb.2010.13.79

[20]

Norikazu Saito. Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Communications on Pure & Applied Analysis, 2012, 11 (1) : 339-364. doi: 10.3934/cpaa.2012.11.339

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (111)
  • HTML views (196)
  • Cited by (0)

Other articles
by authors

[Back to Top]