-
Previous Article
Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case
- DCDS Home
- This Issue
-
Next Article
Second order estimates for complex Hessian equations on Hermitian manifolds
Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $
1. | School of Mathematics Department, Shandong University, Jinan 250100, China |
There is a long standing conjecture that there are at least $ n $ closed characteristics on any compact convex hypersurface $ \Sigma $ in $ \mathbb{R}^{2n} $. In this paper, we provide some new estimates and prove that there are at least $ [\frac{3n}{4}] $ closed characteristics on $ \Sigma $ for any positive integer $ n $, where $ \Sigma $ satisfies $ \Sigma = P\Sigma $ for a certain class of symplectic matrix $ P $. These results are not considered in previous papers.
References:
[1] |
S. E. Cappell, R. Lee and E. Y. Miller,
On the maslov index, Comm. Pure Appl. Math., 47 (1994), 121-186.
doi: 10.1002/cpa.3160470202. |
[2] |
Y. Dong and Y. Long,
Closed characteristics on partically symmetric compact convex hypersurfaces in $\mathbb{R}^2n$, J. Diff. Equ., 196 (2004), 226-248.
doi: 10.1016/S0022-0396(03)00168-2. |
[3] |
H. Duan and H. Liu, Multiplicity and ellipticity of closed characteristics on compact star-shaped hypersurfaces in $\mathbb{R}^2n$,, Cal. Variations and PDEs, 56 (2017), Paper No. 65, 30 pp.
doi: 10.1007/s00526-017-1173-1. |
[4] |
I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer-Verlag, Berlin, 1990.
doi: 10.1007/978-3-642-74331-3. |
[5] |
I. Ekeland and H. Hofer,
Convex Hamiltonian energy surfaces and their periodic trajectories, Commun. Math. Phys., 113 (1987), 419-469.
doi: 10.1007/BF01221255. |
[6] |
I. Ekeland and J. M. Lasry,
On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Annals of Math., 112 (1980), 283-319.
doi: 10.2307/1971148. |
[7] |
I. Ekeland and L. Lassoued,
Multiplicite des trajectoires fermees d'un systeme hamiltonien sur une hypersurface d'energie convexe, Ann. IHP. Anal. Non Linéaire, 4 (1987), 307-335.
doi: 10.1016/S0294-1449(16)30362-6. |
[8] |
E. R. Fadell and P. H. Rabinowitz,
Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Inv. Math., 45 (1978), 139-174.
doi: 10.1007/BF01390270. |
[9] |
X. Hu and S. Sun,
Index and stability of symmetric periodic orbits in Hamiltonian systems with its application to figure-eight orbit, Commun. Math. Phys., 290 (2009), 737-777.
doi: 10.1007/s00220-009-0860-y. |
[10] |
C. Liu, Y. Long and C. Zhu,
Multiplicity of closed characteristics on symmetric convex hypersurfaces in $\mathbb{R}^2n$, Math. Ann., 323 (2002), 201-215.
doi: 10.1007/s002089100257. |
[11] |
C. Liu and S. Tang,
Maslov $(P, \omega)$-index theory for symplectic paths, Adv. Nonlinear Studies, 15 (2015), 963-990.
doi: 10.1515/ans-2015-0412. |
[12] |
C. Liu and D. Zhang,
Iteration theory of L-index and multiplicity of brake orbits, J. Diff. Equ., 257 (2014), 1194-1245.
doi: 10.1016/j.jde.2014.05.006. |
[13] |
H. Liu,
Multiple $P$-invariant closed characteristics on partially symmetric compact convex hypersurfaces in $\mathbb{R}^2n$, Cal. Variations and PDEs, 49 (2014), 1121-1147.
doi: 10.1007/s00526-013-0614-8. |
[14] |
Y. Long, Index Theory for Symplectic Paths with Applications, Progress in Mathematics, No. 207, Birkhauser, Basel, 2002.
doi: 10.1007/978-3-0348-8175-3. |
[15] |
Y. Long and C. Zhu,
Maslov-type index theorey for symplectic paths and spectral flow Ⅱ, Chinese. Ann. Math. Ser. B, 21 (2000), 89-108.
doi: 10.1142/S0252959900000133. |
[16] |
Y. Long and C. Zhu,
Closed characteristics on compact convex hypersurfaces in $\mathbb{R}^2n$, Ann. Math., 155 (2002), 317-368.
doi: 10.2307/3062120. |
[17] |
Y. Long, D. Zhang and C. Zhu,
Multiple brake orbits in bounded convex symmetric domains, Adv. Math., 203 (2006), 568-635.
doi: 10.1016/j.aim.2005.05.005. |
[18] |
P. H. Rabinowitz,
Peroidic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31 (1978), 157-184.
doi: 10.1002/cpa.3160310203. |
[19] |
P. H. Rabinowitz,
On the existence of periodic solutions for a class of symmetric Hamiltonian system, Nonlinear Anal., 11 (1987), 599-611.
doi: 10.1016/0362-546X(87)90075-7. |
[20] |
J. Robbin and D. Salamon,
The maslov index for paths, Topology, 32 (1993), 827-844.
doi: 10.1016/0040-9383(93)90052-W. |
[21] |
A. Szulkin,
Morse theory and existence of periodic solutions of convex Hamiltonian systems, Bull. Soc. Math. France, 116 (1988), 171-197.
doi: 10.24033/bsmf.2094. |
[22] |
A. Szulkin,
An index theory and existence of multiple brake orbits for star-shaped Hamiltonian systems, Math. Ann., 283 (1989), 241-255.
doi: 10.1007/BF01446433. |
[23] |
W. Wang,
Closed characteristics on compact convex hypersurfaces in $\mathbb{R}^8$, Adv. Math., 297 (2016), 93-148.
doi: 10.1016/j.aim.2016.03.044. |
[24] |
W. Wang, X. Hu and Y. Long,
Resonance identity, stability and multiplicity of closed characteristics on the conpact convex hypersurfaces, Duke Math. J., 139 (2007), 411-462.
doi: 10.1215/S0012-7094-07-13931-0. |
[25] |
A. Weinstein,
Periodic orbits for convex Hamiltonian systems, Ann. Math., 108 (1978), 507-518.
doi: 10.2307/1971185. |
[26] |
D. Zhang,
P-cyclic symmetric closed characteristics on compact convex P-cyclic symmetric hypersurface in $\mathbb{R}^2n$, Discrete Continuous Dynam. Systems, 33 (2013), 947-964.
doi: 10.3934/dcds.2013.33.947. |
show all references
References:
[1] |
S. E. Cappell, R. Lee and E. Y. Miller,
On the maslov index, Comm. Pure Appl. Math., 47 (1994), 121-186.
doi: 10.1002/cpa.3160470202. |
[2] |
Y. Dong and Y. Long,
Closed characteristics on partically symmetric compact convex hypersurfaces in $\mathbb{R}^2n$, J. Diff. Equ., 196 (2004), 226-248.
doi: 10.1016/S0022-0396(03)00168-2. |
[3] |
H. Duan and H. Liu, Multiplicity and ellipticity of closed characteristics on compact star-shaped hypersurfaces in $\mathbb{R}^2n$,, Cal. Variations and PDEs, 56 (2017), Paper No. 65, 30 pp.
doi: 10.1007/s00526-017-1173-1. |
[4] |
I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer-Verlag, Berlin, 1990.
doi: 10.1007/978-3-642-74331-3. |
[5] |
I. Ekeland and H. Hofer,
Convex Hamiltonian energy surfaces and their periodic trajectories, Commun. Math. Phys., 113 (1987), 419-469.
doi: 10.1007/BF01221255. |
[6] |
I. Ekeland and J. M. Lasry,
On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Annals of Math., 112 (1980), 283-319.
doi: 10.2307/1971148. |
[7] |
I. Ekeland and L. Lassoued,
Multiplicite des trajectoires fermees d'un systeme hamiltonien sur une hypersurface d'energie convexe, Ann. IHP. Anal. Non Linéaire, 4 (1987), 307-335.
doi: 10.1016/S0294-1449(16)30362-6. |
[8] |
E. R. Fadell and P. H. Rabinowitz,
Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Inv. Math., 45 (1978), 139-174.
doi: 10.1007/BF01390270. |
[9] |
X. Hu and S. Sun,
Index and stability of symmetric periodic orbits in Hamiltonian systems with its application to figure-eight orbit, Commun. Math. Phys., 290 (2009), 737-777.
doi: 10.1007/s00220-009-0860-y. |
[10] |
C. Liu, Y. Long and C. Zhu,
Multiplicity of closed characteristics on symmetric convex hypersurfaces in $\mathbb{R}^2n$, Math. Ann., 323 (2002), 201-215.
doi: 10.1007/s002089100257. |
[11] |
C. Liu and S. Tang,
Maslov $(P, \omega)$-index theory for symplectic paths, Adv. Nonlinear Studies, 15 (2015), 963-990.
doi: 10.1515/ans-2015-0412. |
[12] |
C. Liu and D. Zhang,
Iteration theory of L-index and multiplicity of brake orbits, J. Diff. Equ., 257 (2014), 1194-1245.
doi: 10.1016/j.jde.2014.05.006. |
[13] |
H. Liu,
Multiple $P$-invariant closed characteristics on partially symmetric compact convex hypersurfaces in $\mathbb{R}^2n$, Cal. Variations and PDEs, 49 (2014), 1121-1147.
doi: 10.1007/s00526-013-0614-8. |
[14] |
Y. Long, Index Theory for Symplectic Paths with Applications, Progress in Mathematics, No. 207, Birkhauser, Basel, 2002.
doi: 10.1007/978-3-0348-8175-3. |
[15] |
Y. Long and C. Zhu,
Maslov-type index theorey for symplectic paths and spectral flow Ⅱ, Chinese. Ann. Math. Ser. B, 21 (2000), 89-108.
doi: 10.1142/S0252959900000133. |
[16] |
Y. Long and C. Zhu,
Closed characteristics on compact convex hypersurfaces in $\mathbb{R}^2n$, Ann. Math., 155 (2002), 317-368.
doi: 10.2307/3062120. |
[17] |
Y. Long, D. Zhang and C. Zhu,
Multiple brake orbits in bounded convex symmetric domains, Adv. Math., 203 (2006), 568-635.
doi: 10.1016/j.aim.2005.05.005. |
[18] |
P. H. Rabinowitz,
Peroidic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31 (1978), 157-184.
doi: 10.1002/cpa.3160310203. |
[19] |
P. H. Rabinowitz,
On the existence of periodic solutions for a class of symmetric Hamiltonian system, Nonlinear Anal., 11 (1987), 599-611.
doi: 10.1016/0362-546X(87)90075-7. |
[20] |
J. Robbin and D. Salamon,
The maslov index for paths, Topology, 32 (1993), 827-844.
doi: 10.1016/0040-9383(93)90052-W. |
[21] |
A. Szulkin,
Morse theory and existence of periodic solutions of convex Hamiltonian systems, Bull. Soc. Math. France, 116 (1988), 171-197.
doi: 10.24033/bsmf.2094. |
[22] |
A. Szulkin,
An index theory and existence of multiple brake orbits for star-shaped Hamiltonian systems, Math. Ann., 283 (1989), 241-255.
doi: 10.1007/BF01446433. |
[23] |
W. Wang,
Closed characteristics on compact convex hypersurfaces in $\mathbb{R}^8$, Adv. Math., 297 (2016), 93-148.
doi: 10.1016/j.aim.2016.03.044. |
[24] |
W. Wang, X. Hu and Y. Long,
Resonance identity, stability and multiplicity of closed characteristics on the conpact convex hypersurfaces, Duke Math. J., 139 (2007), 411-462.
doi: 10.1215/S0012-7094-07-13931-0. |
[25] |
A. Weinstein,
Periodic orbits for convex Hamiltonian systems, Ann. Math., 108 (1978), 507-518.
doi: 10.2307/1971185. |
[26] |
D. Zhang,
P-cyclic symmetric closed characteristics on compact convex P-cyclic symmetric hypersurface in $\mathbb{R}^2n$, Discrete Continuous Dynam. Systems, 33 (2013), 947-964.
doi: 10.3934/dcds.2013.33.947. |
[1] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[2] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[3] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
[4] |
Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063 |
[5] |
Amira Khelifa, Yacine Halim. Global behavior of P-dimensional difference equations system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021029 |
[6] |
Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021037 |
[7] |
Ruonan Liu, Run Xu. Hermite-Hadamard type inequalities for harmonical $ (h1,h2)- $convex interval-valued functions. Mathematical Foundations of Computing, 2021 doi: 10.3934/mfc.2021005 |
[8] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382 |
[9] |
Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021071 |
[10] |
Krzysztof A. Krakowski, Luís Machado, Fátima Silva Leite. A unifying approach for rolling symmetric spaces. Journal of Geometric Mechanics, 2021, 13 (1) : 145-166. doi: 10.3934/jgm.2020016 |
[11] |
Enkhbat Rentsen, N. Tungalag, J. Enkhbayar, O. Battogtokh, L. Enkhtuvshin. Application of survival theory in Mining industry. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 443-448. doi: 10.3934/naco.2020036 |
[12] |
Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021012 |
[13] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
[14] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[15] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[16] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451 |
[17] |
Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021025 |
[18] |
Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2021, 13 (1) : 25-53. doi: 10.3934/jgm.2021001 |
[19] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3295-3317. doi: 10.3934/dcds.2020406 |
[20] |
Jia Li, Junxiang Xu. On the reducibility of a class of almost periodic Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3905-3919. doi: 10.3934/dcdsb.2020268 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]