# American Institute of Mathematical Sciences

doi: 10.3934/dcds.2020382

## On local well-posedness and ill-posedness results for a coupled system of mkdv type equations

 1 Instituto de Matemática, Universidade Federal do Rio de Janeiro-UFRJ, Ilha do Fundão, 21945-970. Rio de Janeiro-RJ, Brazil 2 Gran Sasso Science Institute, CP 67100, L' Aquila, Italia 3 Universidade Federal do Rio de Janeiro, Campus Macaé/RJ, Brazil

Received  March 2020 Revised  September 2020 Published  November 2020

We consider the initial value problem associated to a coupled system of modified Korteweg-de Vries type equations
 $\begin{equation*} \begin{cases} \partial_tv + \partial_x^3v + \partial_x(vw^2) = 0,&v(x,0) = \phi(x),\\ \partial_tw + \alpha\partial_x^3w + \partial_x(v^2w) = 0,& w(x,0) = \psi(x), \end{cases} \end{equation*}$
and prove the local well-posedness results for a given data in low regularity Sobolev spaces
 $H^{s}( \rm{I}\! \rm{R})\times H^{k}( \rm{I}\! \rm{R})$
,
 $s,k> -\frac12$
and
 $|s-k|\leq 1/2$
, for
 $\alpha\neq 0,1$
. Also, we prove that: (I) the solution mapping that takes initial data to the solution fails to be
 $C^3$
at the origin, when
 $s<-1/2$
or
 $k<-1/2$
or
 $|s-k|>2$
; (II) the trilinear estimates used in the proof of the local well-posedness theorem fail to hold when (a)
 $s-2k>1$
or
 $k<-1/2$
(b)
 $k-2s>1$
or
 $s<-1/2$
; (c)
 $s = k = -1/2$
;
Citation: Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020382
##### References:
 [1] M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur, Nonlinear-evolution equations of physical significance, Phys. Rev. Lett., 31 (1973), 125-127.  doi: 10.1103/PhysRevLett.31.125.  Google Scholar [2] E. Alarcon, J. Angulo and J. F. Montenegro, Stability and instability of solitary waves for a nonlinear dispersive system, Nonlinear Anal., 36 (1999), 1015-1035.  doi: 10.1016/S0362-546X(97)00724-4.  Google Scholar [3] I. Bejenaru and T. Tao, Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation, J. Funct. Anal., 233 (2006), 228-259.  doi: 10.1016/j.jfa.2005.08.004.  Google Scholar [4] D. Bekiranov, T. Ogawa and G. Ponce, Weak solvability and well-posedness of a coupled Schrödinger-Korteweg de Vries equation for capillary-gravity wave interactions, Proc. Amer. Math. Soc., 125 (1997), 2907-2919.  doi: 10.1090/S0002-9939-97-03941-5.  Google Scholar [5] J. L. Bona, P. E. Souganidis and W. A. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type equation, Proc. Roy. Soc. London Ser. A, 411 (1987), 395-412.   Google Scholar [6] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Geom. Funct. Anal., 3 (1993), 209-262.  doi: 10.1007/BF01895688.  Google Scholar [7] X. Carvajal, Local well-posedness for a higher order nonlinear Schrödinger equation in sobolev spaces of negative indices, Electron. J. Differential Equations, (2004), No. 13, 10 pp.  Google Scholar [8] X. Carvajal, Sharp global well-posedness for a higher order Schrödinger equation, J. Fourier Anal. Appl., 12 (2006), 53-70.  doi: 10.1007/s00041-005-5028-3.  Google Scholar [9] X. Carvajal and M. Panthee, Sharp well-posedness for a coupled system of mKdV-type equations, J. Evol. Equ., 19 (2019), 1167-1197.  doi: 10.1007/s00028-019-00508-6.  Google Scholar [10] M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math., 125 (2003), 1235-1293.  doi: 10.1353/ajm.2003.0040.  Google Scholar [11] A. J. Corcho and M. Panthee, Global well-posedness for a coupled modified KdV system, Bull. Braz. Math. Soc. (N.S.), 43 (2012), 27-57.  doi: 10.1007/s00574-012-0004-4.  Google Scholar [12] L. Domingues, Sharp well-posedness results for the Schrödinger-Benjamin-Ono system, Adv. Differential Equations, 21 (2016), 31-54.   Google Scholar [13] L. Domingues and R. Santos, A note on $C^2$ ill-posedness results for the Zakharov system in arbitrary dimension, 2019, arXiv: 1910.06486. Google Scholar [14] J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace, Séminaire Bourbaki, 1994-1995 (1996), 163-187.   Google Scholar [15] J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436.  doi: 10.1006/jfan.1997.3148.  Google Scholar [16] M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal., 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar [17] C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.  Google Scholar [18] C. E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.  doi: 10.1090/S0894-0347-96-00200-7.  Google Scholar [19] C. E. Kenig, G. Ponce and L. Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J., 106 (2001), 617-633.  doi: 10.1215/S0012-7094-01-10638-8.  Google Scholar [20] J. F. Montenegro, Sistemas de Equações de Evolução não Lineares; Estudo Local, Global e Estabilidade de Ondas Solitárias, Ph.D. thesis, IMPA, Rio de Janeiro, Brazil, 1995. Google Scholar [21] H. Takaoka, Well-posedness for the higher order nonlinear Schrödinger equation, Adv. Math. Sci. Appl., 10 (2000), 149-171.   Google Scholar [22] T. Tao, Multilinear weighted convolution of $L^{2}$ functions, and applications to nonlinear dispersive equations, Amer. J. Math., 123 (2001), 839-908.  doi: 10.1353/ajm.2001.0035.  Google Scholar [23] N. Tzvetkov, Remark on the local ill-posedness for KdV equation, C. R. Acad. Sci. Paris Sér. I Math., 329 (1999), 1043-1047.  doi: 10.1016/S0764-4442(00)88471-2.  Google Scholar

show all references

##### References:
 [1] M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur, Nonlinear-evolution equations of physical significance, Phys. Rev. Lett., 31 (1973), 125-127.  doi: 10.1103/PhysRevLett.31.125.  Google Scholar [2] E. Alarcon, J. Angulo and J. F. Montenegro, Stability and instability of solitary waves for a nonlinear dispersive system, Nonlinear Anal., 36 (1999), 1015-1035.  doi: 10.1016/S0362-546X(97)00724-4.  Google Scholar [3] I. Bejenaru and T. Tao, Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation, J. Funct. Anal., 233 (2006), 228-259.  doi: 10.1016/j.jfa.2005.08.004.  Google Scholar [4] D. Bekiranov, T. Ogawa and G. Ponce, Weak solvability and well-posedness of a coupled Schrödinger-Korteweg de Vries equation for capillary-gravity wave interactions, Proc. Amer. Math. Soc., 125 (1997), 2907-2919.  doi: 10.1090/S0002-9939-97-03941-5.  Google Scholar [5] J. L. Bona, P. E. Souganidis and W. A. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type equation, Proc. Roy. Soc. London Ser. A, 411 (1987), 395-412.   Google Scholar [6] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Geom. Funct. Anal., 3 (1993), 209-262.  doi: 10.1007/BF01895688.  Google Scholar [7] X. Carvajal, Local well-posedness for a higher order nonlinear Schrödinger equation in sobolev spaces of negative indices, Electron. J. Differential Equations, (2004), No. 13, 10 pp.  Google Scholar [8] X. Carvajal, Sharp global well-posedness for a higher order Schrödinger equation, J. Fourier Anal. Appl., 12 (2006), 53-70.  doi: 10.1007/s00041-005-5028-3.  Google Scholar [9] X. Carvajal and M. Panthee, Sharp well-posedness for a coupled system of mKdV-type equations, J. Evol. Equ., 19 (2019), 1167-1197.  doi: 10.1007/s00028-019-00508-6.  Google Scholar [10] M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math., 125 (2003), 1235-1293.  doi: 10.1353/ajm.2003.0040.  Google Scholar [11] A. J. Corcho and M. Panthee, Global well-posedness for a coupled modified KdV system, Bull. Braz. Math. Soc. (N.S.), 43 (2012), 27-57.  doi: 10.1007/s00574-012-0004-4.  Google Scholar [12] L. Domingues, Sharp well-posedness results for the Schrödinger-Benjamin-Ono system, Adv. Differential Equations, 21 (2016), 31-54.   Google Scholar [13] L. Domingues and R. Santos, A note on $C^2$ ill-posedness results for the Zakharov system in arbitrary dimension, 2019, arXiv: 1910.06486. Google Scholar [14] J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace, Séminaire Bourbaki, 1994-1995 (1996), 163-187.   Google Scholar [15] J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436.  doi: 10.1006/jfan.1997.3148.  Google Scholar [16] M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal., 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar [17] C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.  Google Scholar [18] C. E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.  doi: 10.1090/S0894-0347-96-00200-7.  Google Scholar [19] C. E. Kenig, G. Ponce and L. Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J., 106 (2001), 617-633.  doi: 10.1215/S0012-7094-01-10638-8.  Google Scholar [20] J. F. Montenegro, Sistemas de Equações de Evolução não Lineares; Estudo Local, Global e Estabilidade de Ondas Solitárias, Ph.D. thesis, IMPA, Rio de Janeiro, Brazil, 1995. Google Scholar [21] H. Takaoka, Well-posedness for the higher order nonlinear Schrödinger equation, Adv. Math. Sci. Appl., 10 (2000), 149-171.   Google Scholar [22] T. Tao, Multilinear weighted convolution of $L^{2}$ functions, and applications to nonlinear dispersive equations, Amer. J. Math., 123 (2001), 839-908.  doi: 10.1353/ajm.2001.0035.  Google Scholar [23] N. Tzvetkov, Remark on the local ill-posedness for KdV equation, C. R. Acad. Sci. Paris Sér. I Math., 329 (1999), 1043-1047.  doi: 10.1016/S0764-4442(00)88471-2.  Google Scholar
Theorem 1.4
 [1] Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312 [2] Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377 [3] Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $\mathbb{R}^{N}$. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021006 [4] Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 [5] Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361 [6] Charlotte Rodriguez. Networks of geometrically exact beams: Well-posedness and stabilization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021002 [7] Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248 [8] Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 [9] Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161 [10] Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448 [11] Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348 [12] Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227 [13] Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171 [14] Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 [15] Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319 [16] Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384 [17] Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 [18] Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 [19] Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 [20] Helin Guo, Huan-Song Zhou. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1023-1050. doi: 10.3934/dcds.2020308

2019 Impact Factor: 1.338

## Tools

Article outline

Figures and Tables