\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Homogenization for nonlocal problems with smooth kernels

  • * Corresponding author: Julio D. Rossi

    * Corresponding author: Julio D. Rossi

The first and last authors (MC and JDR) are partially supported by CONICET grant PIP GI No 11220150100036CO (Argentina), UBACyT grant 20020160100155BA (Argentina), Project MTM2015-70227-P (Spain).
The third author (MCP) has been partially supported by CNPq 303253/2017-7 and FAPESP 2020/04813-0 (Brazil).
The second author (JCN) supported by CAPES - INCTmat grant 465591/2014-0 (Brazil)

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper we consider the homogenization problem for a nonlocal equation that involve different smooth kernels. We assume that the spacial domain is divided into a sequence of two subdomains $ A_n \cup B_n $ and we have three different smooth kernels, one that controls the jumps from $ A_n $ to $ A_n $, a second one that controls the jumps from $ B_n $ to $ B_n $ and the third one that governs the interactions between $ A_n $ and $ B_n $. Assuming that $ \chi_{A_n} (x) \to X(x) $ weakly-* in $ L^\infty $ (and then $ \chi_{B_n} (x) \to (1-X)(x) $ weakly-* in $ L^\infty $) as $ n \to \infty $ we show that there is an homogenized limit system in which the three kernels and the limit function $ X $ appear. We deal with both Neumann and Dirichlet boundary conditions. Moreover, we also provide a probabilistic interpretation of our results.

    Mathematics Subject Classification: Primary: 45A05, 45C05; Secondary: 45M05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, vol. 165. AMS, 2010. doi: 10.1090/surv/165.
    [2] P. W. Bates and A. Chmaj, An integrodifferential model for phase transitions: Stationary solutions in higher dimensions, J. Statist. Phys., 95 (1999), 1119-1139.  doi: 10.1023/A:1004514803625.
    [3] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland Publishing Company, 1978.
    [4] L. Caffarelli and A. Mellet, Random homogenization of fractional obstacle problems, Netw. Heterog. Media, 3 (2008), 523-554.  doi: 10.3934/nhm.2008.3.523.
    [5] M. Capanna and J. D. Rossi, Mixing local and nonlocal evolution equations, Preprint, arXiv: 2003.03407v1.
    [6] C. Carrillo and P. Fife, Spatial effects in discrete generation population models., J. Math. Biol., 50 (2005), 161-188.  doi: 10.1007/s00285-004-0284-4.
    [7] P. Cazeaux and C. Grandmont, Homogenization of a multiscale viscoelastic model with nonlocal damping, application to the human lungs, Math. Models Methods Appl. Sci., 25 (2015), 1125-1177.  doi: 10.1142/S0218202515500293.
    [8] E. ChasseigneM. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations, J. Math. Pures Appl., 86 (2006), 271-291.  doi: 10.1016/j.matpur.2006.04.005.
    [9] D. Cioranescu and  P. DonatoAn Introduction to Homogenization, Oxford University Press, New York, 1999. 
    [10] C. CortazarM. ElguetaJ. D. Rossi and N. Wolanski, How to approximate the heat equation with neumann boundary conditions by nonlocal diffusion problems, Arch. Rational Mech. Anal., 187 (2008), 137-156.  doi: 10.1007/s00205-007-0062-8.
    [11] M. D'EliaQ. DuM. Gunzburger and R. Lehoucq, Nonlocal convection-diffusion problems on bounded domains and finite-range jump processes, Comput. Methods Appl. Math., 17 (2017), 707-722.  doi: 10.1515/cmam-2017-0029.
    [12] M. D'EliaM. PeregoP. Bochev and D. Littlewood, A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions, Comput. Math. Appl., 71 (2016), 2218-2230.  doi: 10.1016/j.camwa.2015.12.006.
    [13] M. D'EliaD. RidzalK. J. PetersonP. Bochev and M. Shashkov, Optimization-based mesh correction with volume and convexity constraints, J. Comput. Phys., 313 (2016), 455-477.  doi: 10.1016/j.jcp.2016.02.050.
    [14] Q. DuX. H. LiJ. Lu and X. Tian, A quasi-nonlocal coupling method for nonlocal and local diffusion models, SIAM J. Numer. Anal., 56 (2018), 1386-1404.  doi: 10.1137/17M1124012.
    [15] P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, In Trends in Nonlinear Analysis, 153-191, Springer, Berlin, 2003.
    [16] C. G. Gal and M. Warma, Nonlocal transmission problems with fractional diffusion and boundary conditions on non-smooth interfaces, Comm. Partial Differential Equations, 42 (2017), 579-625.  doi: 10.1080/03605302.2017.1295060.
    [17] A. Gárriz, F. Quirós and J. D. Rossi, Coupling local and nonlocal evolution equations, Calc. Var. Par. Diff. Equations., 59 (2020), Paper No. 112, 24 pp. arXiv: 1903.07108. doi: 10.1007/s00526-020-01771-z.
    [18] C. Kipnis and C. Landim, Scaling Limits of Interacting Particle Systems, Grundlehren der mathematischen Wissenschaften, Springer, Berlin, New York, 1999. doi: 10.1007/978-3-662-03752-2.
    [19] D. Kriventsov, Regularity for a local-nonlocal transmission problem, Arch. Ration. Mech. Anal., 217 (2015), 1103-1195.  doi: 10.1007/s00205-015-0851-4.
    [20] T. M. Liggett, Interacting Particle Systems, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, 1985. doi: 10.1007/978-1-4613-8542-4.
    [21] M. C. Pereira, Nonlocal evolution equations in perforated domains, Math. Methods Appl. Sciences, 41 (2018), 6368-6377.  doi: 10.1002/mma.5144.
    [22] M. C. Pereira and J. D. Rossi, An obstacle problem for nonlocal equations in perforated domains, Potential Analysis, 48 (2018), 361-373.  doi: 10.1007/s11118-017-9639-5.
    [23] M. C. Pereira and J. D. Rossi, Nonlocal problems in perforated domains, Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 305-340.  doi: 10.1017/prm.2018.130.
    [24] R. W. Schwab, Periodic homogenization for nonlinear integro-differential equations, SIAM J. Math. Anal., 42 (2010), 2652-2680.  doi: 10.1137/080737897.
    [25] L. Tartar, The General Theory of Homogenization. A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana, Springer-Verlag, 2009. doi: 10.1007/978-3-642-05195-1.
    [26] V. S. Varadarajan, Weak convergence of measures on separable metric spaces, The Indian Journal of Statistics., 19 (1958), 15-22. 
    [27] M. Waurick, Homogenization in fractional elasticity, SIAM J. Math. Anal., 46 (2014), 1551-1576.  doi: 10.1137/130941596.
    [28] D. WilliamsProbability with Martingales, Cambridge University Press, 1991.  doi: 10.1017/CBO9780511813658.
  • 加载中
SHARE

Article Metrics

HTML views(617) PDF downloads(190) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return