-
Previous Article
Properties of multicorrelation sequences and large returns under some ergodicity assumptions
- DCDS Home
- This Issue
-
Next Article
Forward untangling and applications to the uniqueness problem for the continuity equation
Homogenization for nonlocal problems with smooth kernels
1. | CONICET and Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, (1428), Buenos Aires, Argentina |
2. | Dpto. de Matemática, ICMC, Universidade de São Paulo, Avenida Trabalhador São-Carlense, 400, São Carlos - SP, Brazil |
3. | Dpto. de Matemática Aplicada, IME, Universidade de São Paulo, Rua do Matão 1010, São Paulo - SP, Brazil |
In this paper we consider the homogenization problem for a nonlocal equation that involve different smooth kernels. We assume that the spacial domain is divided into a sequence of two subdomains $ A_n \cup B_n $ and we have three different smooth kernels, one that controls the jumps from $ A_n $ to $ A_n $, a second one that controls the jumps from $ B_n $ to $ B_n $ and the third one that governs the interactions between $ A_n $ and $ B_n $. Assuming that $ \chi_{A_n} (x) \to X(x) $ weakly-* in $ L^\infty $ (and then $ \chi_{B_n} (x) \to (1-X)(x) $ weakly-* in $ L^\infty $) as $ n \to \infty $ we show that there is an homogenized limit system in which the three kernels and the limit function $ X $ appear. We deal with both Neumann and Dirichlet boundary conditions. Moreover, we also provide a probabilistic interpretation of our results.
References:
[1] |
F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, vol. 165. AMS, 2010.
doi: 10.1090/surv/165. |
[2] |
P. W. Bates and A. Chmaj,
An integrodifferential model for phase transitions: Stationary solutions in higher dimensions, J. Statist. Phys., 95 (1999), 1119-1139.
doi: 10.1023/A:1004514803625. |
[3] |
A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland Publishing Company, 1978. |
[4] |
L. Caffarelli and A. Mellet,
Random homogenization of fractional obstacle problems, Netw. Heterog. Media, 3 (2008), 523-554.
doi: 10.3934/nhm.2008.3.523. |
[5] |
M. Capanna and J. D. Rossi, Mixing local and nonlocal evolution equations, Preprint, arXiv: 2003.03407v1. |
[6] |
C. Carrillo and P. Fife,
Spatial effects in discrete generation population models., J. Math. Biol., 50 (2005), 161-188.
doi: 10.1007/s00285-004-0284-4. |
[7] |
P. Cazeaux and C. Grandmont,
Homogenization of a multiscale viscoelastic model with nonlocal damping, application to the human lungs, Math. Models Methods Appl. Sci., 25 (2015), 1125-1177.
doi: 10.1142/S0218202515500293. |
[8] |
E. Chasseigne, M. Chaves and J. D. Rossi,
Asymptotic behavior for nonlocal diffusion equations, J. Math. Pures Appl., 86 (2006), 271-291.
doi: 10.1016/j.matpur.2006.04.005. |
[9] |
D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford University Press, New York, 1999.
![]() ![]() |
[10] |
C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski,
How to approximate the heat equation with neumann boundary conditions by nonlocal diffusion problems, Arch. Rational Mech. Anal., 187 (2008), 137-156.
doi: 10.1007/s00205-007-0062-8. |
[11] |
M. D'Elia, Q. Du, M. Gunzburger and R. Lehoucq,
Nonlocal convection-diffusion problems on bounded domains and finite-range jump processes, Comput. Methods Appl. Math., 17 (2017), 707-722.
doi: 10.1515/cmam-2017-0029. |
[12] |
M. D'Elia, M. Perego, P. Bochev and D. Littlewood,
A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions, Comput. Math. Appl., 71 (2016), 2218-2230.
doi: 10.1016/j.camwa.2015.12.006. |
[13] |
M. D'Elia, D. Ridzal, K. J. Peterson, P. Bochev and M. Shashkov,
Optimization-based mesh correction with volume and convexity constraints, J. Comput. Phys., 313 (2016), 455-477.
doi: 10.1016/j.jcp.2016.02.050. |
[14] |
Q. Du, X. H. Li, J. Lu and X. Tian,
A quasi-nonlocal coupling method for nonlocal and local diffusion models, SIAM J. Numer. Anal., 56 (2018), 1386-1404.
doi: 10.1137/17M1124012. |
[15] |
P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, In Trends in Nonlinear Analysis, 153-191, Springer, Berlin, 2003. |
[16] |
C. G. Gal and M. Warma,
Nonlocal transmission problems with fractional diffusion and boundary conditions on non-smooth interfaces, Comm. Partial Differential Equations, 42 (2017), 579-625.
doi: 10.1080/03605302.2017.1295060. |
[17] |
A. Gárriz, F. Quirós and J. D. Rossi, Coupling local and nonlocal evolution equations, Calc. Var. Par. Diff. Equations., 59 (2020), Paper No. 112, 24 pp. arXiv: 1903.07108.
doi: 10.1007/s00526-020-01771-z. |
[18] |
C. Kipnis and C. Landim, Scaling Limits of Interacting Particle Systems, Grundlehren der mathematischen Wissenschaften, Springer, Berlin, New York, 1999.
doi: 10.1007/978-3-662-03752-2. |
[19] |
D. Kriventsov,
Regularity for a local-nonlocal transmission problem, Arch. Ration. Mech. Anal., 217 (2015), 1103-1195.
doi: 10.1007/s00205-015-0851-4. |
[20] |
T. M. Liggett, Interacting Particle Systems, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, 1985.
doi: 10.1007/978-1-4613-8542-4. |
[21] |
M. C. Pereira,
Nonlocal evolution equations in perforated domains, Math. Methods Appl. Sciences, 41 (2018), 6368-6377.
doi: 10.1002/mma.5144. |
[22] |
M. C. Pereira and J. D. Rossi,
An obstacle problem for nonlocal equations in perforated domains, Potential Analysis, 48 (2018), 361-373.
doi: 10.1007/s11118-017-9639-5. |
[23] |
M. C. Pereira and J. D. Rossi,
Nonlocal problems in perforated domains, Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 305-340.
doi: 10.1017/prm.2018.130. |
[24] |
R. W. Schwab,
Periodic homogenization for nonlinear integro-differential equations, SIAM J. Math. Anal., 42 (2010), 2652-2680.
doi: 10.1137/080737897. |
[25] |
L. Tartar, The General Theory of Homogenization. A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana, Springer-Verlag, 2009.
doi: 10.1007/978-3-642-05195-1. |
[26] |
V. S. Varadarajan,
Weak convergence of measures on separable metric spaces, The Indian Journal of Statistics., 19 (1958), 15-22.
|
[27] |
M. Waurick,
Homogenization in fractional elasticity, SIAM J. Math. Anal., 46 (2014), 1551-1576.
doi: 10.1137/130941596. |
[28] |
D. Williams, Probability with Martingales, Cambridge University Press, 1991.
doi: 10.1017/CBO9780511813658.![]() ![]() ![]() |
show all references
References:
[1] |
F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, vol. 165. AMS, 2010.
doi: 10.1090/surv/165. |
[2] |
P. W. Bates and A. Chmaj,
An integrodifferential model for phase transitions: Stationary solutions in higher dimensions, J. Statist. Phys., 95 (1999), 1119-1139.
doi: 10.1023/A:1004514803625. |
[3] |
A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland Publishing Company, 1978. |
[4] |
L. Caffarelli and A. Mellet,
Random homogenization of fractional obstacle problems, Netw. Heterog. Media, 3 (2008), 523-554.
doi: 10.3934/nhm.2008.3.523. |
[5] |
M. Capanna and J. D. Rossi, Mixing local and nonlocal evolution equations, Preprint, arXiv: 2003.03407v1. |
[6] |
C. Carrillo and P. Fife,
Spatial effects in discrete generation population models., J. Math. Biol., 50 (2005), 161-188.
doi: 10.1007/s00285-004-0284-4. |
[7] |
P. Cazeaux and C. Grandmont,
Homogenization of a multiscale viscoelastic model with nonlocal damping, application to the human lungs, Math. Models Methods Appl. Sci., 25 (2015), 1125-1177.
doi: 10.1142/S0218202515500293. |
[8] |
E. Chasseigne, M. Chaves and J. D. Rossi,
Asymptotic behavior for nonlocal diffusion equations, J. Math. Pures Appl., 86 (2006), 271-291.
doi: 10.1016/j.matpur.2006.04.005. |
[9] |
D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford University Press, New York, 1999.
![]() ![]() |
[10] |
C. Cortazar, M. Elgueta, J. D. Rossi and N. Wolanski,
How to approximate the heat equation with neumann boundary conditions by nonlocal diffusion problems, Arch. Rational Mech. Anal., 187 (2008), 137-156.
doi: 10.1007/s00205-007-0062-8. |
[11] |
M. D'Elia, Q. Du, M. Gunzburger and R. Lehoucq,
Nonlocal convection-diffusion problems on bounded domains and finite-range jump processes, Comput. Methods Appl. Math., 17 (2017), 707-722.
doi: 10.1515/cmam-2017-0029. |
[12] |
M. D'Elia, M. Perego, P. Bochev and D. Littlewood,
A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions, Comput. Math. Appl., 71 (2016), 2218-2230.
doi: 10.1016/j.camwa.2015.12.006. |
[13] |
M. D'Elia, D. Ridzal, K. J. Peterson, P. Bochev and M. Shashkov,
Optimization-based mesh correction with volume and convexity constraints, J. Comput. Phys., 313 (2016), 455-477.
doi: 10.1016/j.jcp.2016.02.050. |
[14] |
Q. Du, X. H. Li, J. Lu and X. Tian,
A quasi-nonlocal coupling method for nonlocal and local diffusion models, SIAM J. Numer. Anal., 56 (2018), 1386-1404.
doi: 10.1137/17M1124012. |
[15] |
P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, In Trends in Nonlinear Analysis, 153-191, Springer, Berlin, 2003. |
[16] |
C. G. Gal and M. Warma,
Nonlocal transmission problems with fractional diffusion and boundary conditions on non-smooth interfaces, Comm. Partial Differential Equations, 42 (2017), 579-625.
doi: 10.1080/03605302.2017.1295060. |
[17] |
A. Gárriz, F. Quirós and J. D. Rossi, Coupling local and nonlocal evolution equations, Calc. Var. Par. Diff. Equations., 59 (2020), Paper No. 112, 24 pp. arXiv: 1903.07108.
doi: 10.1007/s00526-020-01771-z. |
[18] |
C. Kipnis and C. Landim, Scaling Limits of Interacting Particle Systems, Grundlehren der mathematischen Wissenschaften, Springer, Berlin, New York, 1999.
doi: 10.1007/978-3-662-03752-2. |
[19] |
D. Kriventsov,
Regularity for a local-nonlocal transmission problem, Arch. Ration. Mech. Anal., 217 (2015), 1103-1195.
doi: 10.1007/s00205-015-0851-4. |
[20] |
T. M. Liggett, Interacting Particle Systems, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, 1985.
doi: 10.1007/978-1-4613-8542-4. |
[21] |
M. C. Pereira,
Nonlocal evolution equations in perforated domains, Math. Methods Appl. Sciences, 41 (2018), 6368-6377.
doi: 10.1002/mma.5144. |
[22] |
M. C. Pereira and J. D. Rossi,
An obstacle problem for nonlocal equations in perforated domains, Potential Analysis, 48 (2018), 361-373.
doi: 10.1007/s11118-017-9639-5. |
[23] |
M. C. Pereira and J. D. Rossi,
Nonlocal problems in perforated domains, Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 305-340.
doi: 10.1017/prm.2018.130. |
[24] |
R. W. Schwab,
Periodic homogenization for nonlinear integro-differential equations, SIAM J. Math. Anal., 42 (2010), 2652-2680.
doi: 10.1137/080737897. |
[25] |
L. Tartar, The General Theory of Homogenization. A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana, Springer-Verlag, 2009.
doi: 10.1007/978-3-642-05195-1. |
[26] |
V. S. Varadarajan,
Weak convergence of measures on separable metric spaces, The Indian Journal of Statistics., 19 (1958), 15-22.
|
[27] |
M. Waurick,
Homogenization in fractional elasticity, SIAM J. Math. Anal., 46 (2014), 1551-1576.
doi: 10.1137/130941596. |
[28] |
D. Williams, Probability with Martingales, Cambridge University Press, 1991.
doi: 10.1017/CBO9780511813658.![]() ![]() ![]() |
[1] |
Sunghan Kim, Ki-Ahm Lee, Henrik Shahgholian. Homogenization of the boundary value for the Dirichlet problem. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6843-6864. doi: 10.3934/dcds.2019234 |
[2] |
Fioralba Cakoni, Houssem Haddar, Isaac Harris. Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem. Inverse Problems and Imaging, 2015, 9 (4) : 1025-1049. doi: 10.3934/ipi.2015.9.1025 |
[3] |
Wenxian Shen, Zhongwei Shen. Transition fronts in nonlocal Fisher-KPP equations in time heterogeneous media. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1193-1213. doi: 10.3934/cpaa.2016.15.1193 |
[4] |
Ihsane Bikri, Ronald B. Guenther, Enrique A. Thomann. The Dirichlet to Neumann map - An application to the Stokes problem in half space. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 221-230. doi: 10.3934/dcdss.2010.3.221 |
[5] |
Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems and Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959 |
[6] |
Mamadou Sango. Homogenization of the Neumann problem for a quasilinear elliptic equation in a perforated domain. Networks and Heterogeneous Media, 2010, 5 (2) : 361-384. doi: 10.3934/nhm.2010.5.361 |
[7] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[8] |
Chuanqiang Chen, Li Chen, Xinqun Mei, Ni Xiang. The Neumann problem for a class of mixed complex Hessian equations. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022049 |
[9] |
Antonin Chambolle, Gilles Thouroude. Homogenization of interfacial energies and construction of plane-like minimizers in periodic media through a cell problem. Networks and Heterogeneous Media, 2009, 4 (1) : 127-152. doi: 10.3934/nhm.2009.4.127 |
[10] |
Yu-Hao Liang, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a one-dimensional Dirichlet-Neumann problem with a specific cubic nonlinearity. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 1075-1105. doi: 10.3934/dcds.2020071 |
[11] |
Grégoire Allaire, Yves Capdeboscq, Marjolaine Puel. Homogenization of a one-dimensional spectral problem for a singularly perturbed elliptic operator with Neumann boundary conditions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 1-31. doi: 10.3934/dcdsb.2012.17.1 |
[12] |
Fanghua Lin, Xiaodong Yan. A type of homogenization problem. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 1-30. doi: 10.3934/dcds.2003.9.1 |
[13] |
Bo Guan, Heming Jiao. The Dirichlet problem for Hessian type elliptic equations on Riemannian manifolds. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 701-714. doi: 10.3934/dcds.2016.36.701 |
[14] |
Salvatore A. Marano, Sunra J. N. Mosconi. Some recent results on the Dirichlet problem for $(p, q)$-Laplace equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 279-291. doi: 10.3934/dcdss.2018015 |
[15] |
Chunhui Qiu, Rirong Yuan. On the Dirichlet problem for fully nonlinear elliptic equations on annuli of metric cones. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5707-5730. doi: 10.3934/dcds.2017247 |
[16] |
Martino Bardi, Paola Mannucci. On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2006, 5 (4) : 709-731. doi: 10.3934/cpaa.2006.5.709 |
[17] |
Goro Akagi. Energy solutions of the Cauchy-Neumann problem for porous medium equations. Conference Publications, 2009, 2009 (Special) : 1-10. doi: 10.3934/proc.2009.2009.1 |
[18] |
Masato Hashizume, Chun-Hsiung Hsia, Gyeongha Hwang. On the Neumann problem of Hardy-Sobolev critical equations with the multiple singularities. Communications on Pure and Applied Analysis, 2019, 18 (1) : 301-322. doi: 10.3934/cpaa.2019016 |
[19] |
Silvia Frassu. Nonlinear Dirichlet problem for the nonlocal anisotropic operator $ L_K $. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1847-1867. doi: 10.3934/cpaa.2019086 |
[20] |
Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]