doi: 10.3934/dcds.2020390

A symmetric Random Walk defined by the time-one map of a geodesic flow

Av. Presidente Antônio Carlos 6627, Belo Horizonte-MG, BR31270-901

* Corresponding author: Pablo D. Carrasco

Received  August 2020 Revised  October 2020 Published  December 2020

In this note we consider a symmetric Random Walk defined by a $ (f, f^{-1}) $ Kalikow type system, where $ f $ is the time-one map of the geodesic flow corresponding to an hyperbolic manifold. We provide necessary and sufficient conditions for the existence of an stationary measure for the walk that is equivalent to the volume in the corresponding unit tangent bundle. Some dynamical consequences for the Random Walk are deduced in these cases.

Citation: Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020390
References:
[1]

D. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov., 90 (1967), 209 pp.  Google Scholar

[2]

A. AvilaM. Viana and A. Wilkinson, Absolute continuity, Lyapunov exponents and rigidity I: Geodesic flows, Journal of the European Mathematical Society, 17 (2015), 1435-1462.  doi: 10.4171/JEMS/534.  Google Scholar

[3]

A. Candel and L. Conlon, Foliations I, American Mathematical Society, Providence, RI, 2000. doi: 10.1090/gsm/023.  Google Scholar

[4]

J.-P. Conze and Y. Guivarc'h, Marches en milieu aléatoire et mesures quasi-invariantes pour un système dynamique, Colloquium Mathematicum, 84 (2000), 457-480.  doi: 10.4064/cm-84/85-2-457-480.  Google Scholar

[5]

D. Dolgopyat, B. Fayad, and M. Saprykina, Erratic behavior for 1-dimensional Random Walks in a Liouville quasi-periodic environment., preprint, 2019, arXiv: 1901.10709. Google Scholar

[6]

M. Gorodin and B. Lifsic, Central limit theorem for stationary Markov processes, In Third Vilnius Conference on Probability and Statistics, volume 1, 1981,147–148. Google Scholar

[7] B. Hasselblatt and A. Katok, A First Course in Dynamics, Cambridge University Press, New York, 2003.  doi: 10.1017/CBO9780511998188.  Google Scholar
[8]

F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, A Survey of Partially Hyperbolic Dynamics, In Partially Hyperbolic Dynamics, Laminations and Teichmüller Flow, Fields Institute Communications, vol. 51, 2007, 35–88.  Google Scholar

[9]

M. W. Hirsch, C. C. Pugh, and M. I. Shub, Invariant Manifolds, Springer Berlin Heidelberg, 1977. Google Scholar

[10]

V. Kaloshin and Y. Sinai, Simple random walks along orbits of Anosov diffeomorphisms, Tr. Mat. Inst. Steklova, 228 (2000), 236-245.   Google Scholar

[11]

A. Katok and A. Kononenko, Cocycles' stability for partially hyperbolic systems, Mathematical Research Letters, 3 (1996), 191-210.  doi: 10.4310/MRL.1996.v3.n2.a6.  Google Scholar

[12]

Y. Kifer, Ergodic Theory of Random Transformations, Birkhäuser Boston, Inc., Boston, MA, 1986. doi: 10.1007/978-1-4684-9175-3.  Google Scholar

[13]

C. Kipnis and S. Varadhan, Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions, Communications Math. Physics, 104 (1986), 1-19.  doi: 10.1007/BF01210789.  Google Scholar

[14]

J. Neveu and A. Feinstein, Mathematical Foundations of the Calculus of Probability, Holden-Day, Inc. San Francisco, Calif.-London-Amsterdam, 1965.  Google Scholar

[15]

Y. Pesin, Lectures on Partial Hyperbolicity and Stable Ergodicity, European Mathematical Society, Zürich, 2004. doi: 10.4171/003.  Google Scholar

[16]

C. Pugh and M. Shub, Stable ergodicity and julienne quasi-conformality, J. Eur. Math. Soc. (JEMS), 2 (2000), 1-52.  doi: 10.1007/s100970050013.  Google Scholar

[17]

F. Rodriguez-HertzJ. Rodriguez-Hertz and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Inventiones Mathematicae, 172 (2008), 353-381.  doi: 10.1007/s00222-007-0100-z.  Google Scholar

[18]

F. Rodriguez-HertzJ. Rodriguez-Hertz and R. Ures, A non-dynamically coherent example on $\mathbb{T}^3$, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 33 (2016), 1023-1032.  doi: 10.1016/j.anihpc.2015.03.003.  Google Scholar

[19]

V. Rokhlin, Lectures on the entropy theory of transformations with invariant measure, Uspehi Mat. Nauk., 22 (1967), 3-56.   Google Scholar

[20]

Y. Sinai, Simple random walks on tori, Journal of Statistical Physics, 94 (1999), 695-708.  doi: 10.1023/A:1004564824697.  Google Scholar

[21]

W. A. Veech, Periodic points and invariant pseudomeasures for toral endomorphisms, Ergodic Theory and Dynamical Systems, 6 (1986), 449-473.  doi: 10.1017/S0143385700003606.  Google Scholar

[22]

A. Wilkinson, The cohomological equation for partially hyperbolic diffeomorphisms, Astérisque, 358 (2013), 75–165.  Google Scholar

[23]

O. Zeitouni, Random walks in random environment, In Lecture Notes in Math., vol. 1837, Springer, Berlin, 2004,189–312. doi: 10.1007/978-3-540-39874-5_2.  Google Scholar

show all references

References:
[1]

D. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov., 90 (1967), 209 pp.  Google Scholar

[2]

A. AvilaM. Viana and A. Wilkinson, Absolute continuity, Lyapunov exponents and rigidity I: Geodesic flows, Journal of the European Mathematical Society, 17 (2015), 1435-1462.  doi: 10.4171/JEMS/534.  Google Scholar

[3]

A. Candel and L. Conlon, Foliations I, American Mathematical Society, Providence, RI, 2000. doi: 10.1090/gsm/023.  Google Scholar

[4]

J.-P. Conze and Y. Guivarc'h, Marches en milieu aléatoire et mesures quasi-invariantes pour un système dynamique, Colloquium Mathematicum, 84 (2000), 457-480.  doi: 10.4064/cm-84/85-2-457-480.  Google Scholar

[5]

D. Dolgopyat, B. Fayad, and M. Saprykina, Erratic behavior for 1-dimensional Random Walks in a Liouville quasi-periodic environment., preprint, 2019, arXiv: 1901.10709. Google Scholar

[6]

M. Gorodin and B. Lifsic, Central limit theorem for stationary Markov processes, In Third Vilnius Conference on Probability and Statistics, volume 1, 1981,147–148. Google Scholar

[7] B. Hasselblatt and A. Katok, A First Course in Dynamics, Cambridge University Press, New York, 2003.  doi: 10.1017/CBO9780511998188.  Google Scholar
[8]

F. Rodriguez Hertz, M. Rodriguez Hertz and R. Ures, A Survey of Partially Hyperbolic Dynamics, In Partially Hyperbolic Dynamics, Laminations and Teichmüller Flow, Fields Institute Communications, vol. 51, 2007, 35–88.  Google Scholar

[9]

M. W. Hirsch, C. C. Pugh, and M. I. Shub, Invariant Manifolds, Springer Berlin Heidelberg, 1977. Google Scholar

[10]

V. Kaloshin and Y. Sinai, Simple random walks along orbits of Anosov diffeomorphisms, Tr. Mat. Inst. Steklova, 228 (2000), 236-245.   Google Scholar

[11]

A. Katok and A. Kononenko, Cocycles' stability for partially hyperbolic systems, Mathematical Research Letters, 3 (1996), 191-210.  doi: 10.4310/MRL.1996.v3.n2.a6.  Google Scholar

[12]

Y. Kifer, Ergodic Theory of Random Transformations, Birkhäuser Boston, Inc., Boston, MA, 1986. doi: 10.1007/978-1-4684-9175-3.  Google Scholar

[13]

C. Kipnis and S. Varadhan, Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions, Communications Math. Physics, 104 (1986), 1-19.  doi: 10.1007/BF01210789.  Google Scholar

[14]

J. Neveu and A. Feinstein, Mathematical Foundations of the Calculus of Probability, Holden-Day, Inc. San Francisco, Calif.-London-Amsterdam, 1965.  Google Scholar

[15]

Y. Pesin, Lectures on Partial Hyperbolicity and Stable Ergodicity, European Mathematical Society, Zürich, 2004. doi: 10.4171/003.  Google Scholar

[16]

C. Pugh and M. Shub, Stable ergodicity and julienne quasi-conformality, J. Eur. Math. Soc. (JEMS), 2 (2000), 1-52.  doi: 10.1007/s100970050013.  Google Scholar

[17]

F. Rodriguez-HertzJ. Rodriguez-Hertz and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Inventiones Mathematicae, 172 (2008), 353-381.  doi: 10.1007/s00222-007-0100-z.  Google Scholar

[18]

F. Rodriguez-HertzJ. Rodriguez-Hertz and R. Ures, A non-dynamically coherent example on $\mathbb{T}^3$, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 33 (2016), 1023-1032.  doi: 10.1016/j.anihpc.2015.03.003.  Google Scholar

[19]

V. Rokhlin, Lectures on the entropy theory of transformations with invariant measure, Uspehi Mat. Nauk., 22 (1967), 3-56.   Google Scholar

[20]

Y. Sinai, Simple random walks on tori, Journal of Statistical Physics, 94 (1999), 695-708.  doi: 10.1023/A:1004564824697.  Google Scholar

[21]

W. A. Veech, Periodic points and invariant pseudomeasures for toral endomorphisms, Ergodic Theory and Dynamical Systems, 6 (1986), 449-473.  doi: 10.1017/S0143385700003606.  Google Scholar

[22]

A. Wilkinson, The cohomological equation for partially hyperbolic diffeomorphisms, Astérisque, 358 (2013), 75–165.  Google Scholar

[23]

O. Zeitouni, Random walks in random environment, In Lecture Notes in Math., vol. 1837, Springer, Berlin, 2004,189–312. doi: 10.1007/978-3-540-39874-5_2.  Google Scholar

[1]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[2]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[3]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[4]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[5]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[6]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[7]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[8]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[9]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[10]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[11]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[12]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[13]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[14]

Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190

[15]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (21)
  • HTML views (96)
  • Cited by (0)

Other articles
by authors

[Back to Top]