• Previous Article
    A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains
  • DCDS Home
  • This Issue
  • Next Article
    Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators
doi: 10.3934/dcds.2020392

Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems

1. 

Departamento de Matemática, Universidade Federal de Sergipe, São Cristóvão-SE, 49100-000, Brazil

2. 

Departamento de Matematica y C. C., Universidad de Santiago de Chile, Casilla 307, Correo 2, Santiago, Chile

3. 

Unidade Acadêmica de Matemática, Universidade Federal de Campina Grande, Campina Grande 58429-900, Brazil

* Corresponding author

Received  December 2019 Revised  October 2020 Published  December 2020

Fund Project: The first author is partially supported by FAPITEC/CAPES and by CNPq - Universal.
The second author was partially supported by Proyecto código 042033CL, Dirección de Investigación, Científica y Tecnológica, DICYT.
The third author was partially supported by Proyecto código 041933UL POSTDOC, Dirección de Investigación, Científica y Tecnológica, DICYT.
The fourth author was partially supported by FONDECYT grant 1181125, 1161635, 1171691

We prove the existence of a bounded positive solution for the following stationary Schrödinger equation
$ \begin{equation*} -\Delta u+V(x)u = f(x,u),\,\,\, x\in\mathbb{R}^n,\,\, n\geq 3, \end{equation*} $
where
$ V $
is a vanishing potential and
$ f $
has a sublinear growth at the origin (for example if
$ f(x,u) $
is a concave function near the origen). For this purpose we use a Brezis-Kamin argument included in [6]. In addition, if
$ f $
has a superlinear growth at infinity, besides the first solution, we obtain a second solution. For this we introduce an auxiliar equation which is variational, however new difficulties appear when handling the compactness. For instance, our approach can be applied for nonlinearities of the type
$ \rho(x)f(u) $
where
$ f $
is a concave-convex function and
$ \rho $
satisfies the
$ \mathrm{(H)} $
property introduced in [6]. We also note that we do not impose any integrability assumptions on the function
$ \rho $
, which is imposed in most works.
Citation: Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020392
References:
[1]

A. AmbrosettiH. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.  doi: 10.1006/jfan.1994.1078.  Google Scholar

[2]

A. AmbrosettiV. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144.  doi: 10.4171/JEMS/24.  Google Scholar

[3]

A. BahrouniH. Ounaies and V. D. Rădulescu, Bound state solutions of sublinear Schrödinger equations with lack of compactness, RACSAM, 113 (2019), 1191-1210.  doi: 10.1007/s13398-018-0541-9.  Google Scholar

[4]

A. BahrouniH. Ounaies and V. D. Rădulescu, Infinitely many solutions for a class of sublinear Schrödinger equations with indefinite potentials, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 445-465.  doi: 10.1017/S0308210513001169.  Google Scholar

[5]

H. Brezis and L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Analysis. Theory, Methods & Applications., 1 (1986), 55-64.  doi: 10.1016/0362-546X(86)90011-8.  Google Scholar

[6]

H. Brezis and S. Kamin, Sublinear elliptic equations in $\mathbb{R}^N$, Manuscripta Math., 74 (1992), 87-106.  doi: 10.1007/BF02567660.  Google Scholar

[7]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[8]

J. Chabrowski and J. M. B. do Ó, On semilinear elliptic equations involving concave and convex nonlinearities, Math. Nachr., 233/234 (2002), 55-76.  doi: 10.1002/1522-2616(200201)233:1<55::AID-MANA55>3.0.CO;2-R.  Google Scholar

[9]

D. G. de FigueiredoJ-P Gossez and P. Ubilla, Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J. Funct. Anal., 199 (2003), 452-467.  doi: 10.1016/S0022-1236(02)00060-5.  Google Scholar

[10]

D. G. de FigueiredoJ-P Gossez and P. Ubilla, Multiplicity results for a family of semilinear elliptic problems under local superlinearity and sublinearity, J. Eur. Math. Soc., 8 (2006), 269-286.  doi: 10.4171/JEMS/52.  Google Scholar

[11]

F. Gazzola and A. Malchiodi, Some remark on the equation $-\Delta u = \lambda(1+u)^p$ for varying $\lambda, p$ and varying domains, Comm. Partial Differential Equations, 27 (2002), 809-845.  doi: 10.1081/PDE-120002875.  Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[13]

Q. Han and F. Lin, Elliptic Partial Differential Equations, Courant Lect. Notes Math., vol. 1, AMS, Providence, RI, 1997.  Google Scholar

[14]

T-S Hsu and H-L Lin, Four positive solutions of semilinear elliptic equations involving concave and convex nonlinearities in $\mathbb{R}^n$, J. Math. Anal. Appl., 365 (2010), 758-775.  doi: 10.1016/j.jmaa.2009.12.004.  Google Scholar

[15]

Z. Liu and Z-Q Wang, Schrödinger equations with concave and convex nonlinearities, Z. angew. Math. Phys., 56 (2005), 609-629.  doi: 10.1007/s00033-005-3115-6.  Google Scholar

[16]

M. H. Protter and H. F. Weinberger, Maximum Principle in Differential Equations, Prentice Hall, Englewoood Cliffs, New Jersey, 1967.  Google Scholar

[17]

T-F Wu, Multiple positive solutions for a class of concave-convex elliptic problems in $\mathbb{R}^n$ involving sign-changing weight, J. Funct. Anal., 258 (2010), 99-131.  doi: 10.1016/j.jfa.2009.08.005.  Google Scholar

show all references

References:
[1]

A. AmbrosettiH. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.  doi: 10.1006/jfan.1994.1078.  Google Scholar

[2]

A. AmbrosettiV. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144.  doi: 10.4171/JEMS/24.  Google Scholar

[3]

A. BahrouniH. Ounaies and V. D. Rădulescu, Bound state solutions of sublinear Schrödinger equations with lack of compactness, RACSAM, 113 (2019), 1191-1210.  doi: 10.1007/s13398-018-0541-9.  Google Scholar

[4]

A. BahrouniH. Ounaies and V. D. Rădulescu, Infinitely many solutions for a class of sublinear Schrödinger equations with indefinite potentials, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 445-465.  doi: 10.1017/S0308210513001169.  Google Scholar

[5]

H. Brezis and L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Analysis. Theory, Methods & Applications., 1 (1986), 55-64.  doi: 10.1016/0362-546X(86)90011-8.  Google Scholar

[6]

H. Brezis and S. Kamin, Sublinear elliptic equations in $\mathbb{R}^N$, Manuscripta Math., 74 (1992), 87-106.  doi: 10.1007/BF02567660.  Google Scholar

[7]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[8]

J. Chabrowski and J. M. B. do Ó, On semilinear elliptic equations involving concave and convex nonlinearities, Math. Nachr., 233/234 (2002), 55-76.  doi: 10.1002/1522-2616(200201)233:1<55::AID-MANA55>3.0.CO;2-R.  Google Scholar

[9]

D. G. de FigueiredoJ-P Gossez and P. Ubilla, Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J. Funct. Anal., 199 (2003), 452-467.  doi: 10.1016/S0022-1236(02)00060-5.  Google Scholar

[10]

D. G. de FigueiredoJ-P Gossez and P. Ubilla, Multiplicity results for a family of semilinear elliptic problems under local superlinearity and sublinearity, J. Eur. Math. Soc., 8 (2006), 269-286.  doi: 10.4171/JEMS/52.  Google Scholar

[11]

F. Gazzola and A. Malchiodi, Some remark on the equation $-\Delta u = \lambda(1+u)^p$ for varying $\lambda, p$ and varying domains, Comm. Partial Differential Equations, 27 (2002), 809-845.  doi: 10.1081/PDE-120002875.  Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[13]

Q. Han and F. Lin, Elliptic Partial Differential Equations, Courant Lect. Notes Math., vol. 1, AMS, Providence, RI, 1997.  Google Scholar

[14]

T-S Hsu and H-L Lin, Four positive solutions of semilinear elliptic equations involving concave and convex nonlinearities in $\mathbb{R}^n$, J. Math. Anal. Appl., 365 (2010), 758-775.  doi: 10.1016/j.jmaa.2009.12.004.  Google Scholar

[15]

Z. Liu and Z-Q Wang, Schrödinger equations with concave and convex nonlinearities, Z. angew. Math. Phys., 56 (2005), 609-629.  doi: 10.1007/s00033-005-3115-6.  Google Scholar

[16]

M. H. Protter and H. F. Weinberger, Maximum Principle in Differential Equations, Prentice Hall, Englewoood Cliffs, New Jersey, 1967.  Google Scholar

[17]

T-F Wu, Multiple positive solutions for a class of concave-convex elliptic problems in $\mathbb{R}^n$ involving sign-changing weight, J. Funct. Anal., 258 (2010), 99-131.  doi: 10.1016/j.jfa.2009.08.005.  Google Scholar

[1]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[2]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[3]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[4]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[5]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[6]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[7]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[8]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[9]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[10]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[11]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[12]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[13]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[14]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[15]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[16]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[17]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[18]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[19]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[20]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (37)
  • HTML views (109)
  • Cited by (0)

[Back to Top]