-
Previous Article
Asymptotic behavior of entire solutions to reaction-diffusion equations in an infinite star graph
- DCDS Home
- This Issue
-
Next Article
Stability of Broucke's isosceles orbit
Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source
1. | College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China |
2. | College of Mathematics and Statistics, Yili Normal University, Yining 835000, China |
$ \begin{equation*} \left\{ \begin{array}{lll} u_t = \Delta u- \nabla\cdot(u\nabla w) + \mu_1 (u-u^m), &x \in \Omega, t>0,\\ v_t = \Delta v - \nabla\cdot(v\nabla u) + \mu_2 ( v-v^l), &x\in \Omega, t>0,\\ w_t = \Delta w - \lambda(u+v)w - \mu w + r(x,t), & x\in \Omega, t>0, \end{array} \right. \end{equation*} $ |
$ \Omega \subset R^2 $ |
$ \mu $ |
$ \mu_1 $ |
$ \mu_2 $ |
$ \lambda $ |
$ m $ |
$ l $ |
$ 2\leq m < 3 $ |
$ l \geq 3 $ |
$ r(x,t) \in C^1(\overline{\Omega}\times[0,\infty))\cup L^{\infty}(\Omega\times(0,\infty)) $ |
References:
[1] |
H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces, Differential Operators and Nonlinear Analysis, in: Teubner-Texte Math., 133 1993, 9-126.
doi: 10.1007/978-3-663-11336-2_1. |
[2] |
T. Black,
Global generalized solutions to a forager-exploiter model with superlinear degradation and theri eventual regularity properties, Math. Models Methods Appl. Sci., 30 (2020), 1075-1117.
doi: 10.1142/S0218202520400072. |
[3] |
X. Cao,
Global radial renormalized solution to a producer-scrounger model with singular sensitivities, Math. Models Methods Appl. Sci., 6 (2020), 1119-1165.
doi: 10.1142/S0218202520400084. |
[4] |
H. Chen, J.-M. Li and K. Wang,
On the vanishing viscosity limit of a chemotaxis model, Discrete Contin. Dyn. Syst. Ser. A, 40 (2020), 1963-1987.
doi: 10.3934/dcds.2020101. |
[5] |
A. Friedman, Partial Different Equations, Holt, Rinehart and Winston, New York, 1969. Google Scholar |
[6] |
Y. Giga and H. Sohr,
Abstrat $L^p$ estimates for the Cauchy problem with aaplications to the Navier-Sotkes equations in exterior domains, J. Funct. Anal., 102 (1991), 72-94.
doi: 10.1016/0022-1236(91)90136-S. |
[7] |
B. Hu and Y. Tao,
To the exclusion of blow-up in three-dimensional chemotaxis-growth model with indirect attractant production, Math. Models Methods Appl. Sci., 26 (2016), 2111-2128.
doi: 10.1142/S0218202516400091. |
[8] |
C. Jin,
Global classical solution and stability to a coupled chemotaxis-fluid model with logistic source, Discrete Contin. Dyn. Syst. Ser. A, 38 (2018), 3547-3566.
doi: 10.3934/dcds.2018150. |
[9] |
H.-Y. Jin and Z.-A. Wang,
Global stabilization of the full attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. A, 40 (2020), 3509-3527.
doi: 10.3934/dcds.2020027. |
[10] |
J. Lankeit and Y. Wang,
Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption, Discrete Contin. Dyn. Syst. Ser. A, 37 (2017), 6099-6121.
doi: 10.3934/dcds.2017262. |
[11] |
H. Li and Y. Tao,
Boundedness in a chemotaxis system with indirect signal production and generalized logistic source, Appl. Math. Lett., 77 (2018), 108-113.
doi: 10.1016/j.aml.2017.10.006. |
[12] |
L. Meng, J. Yuan and X. Zheng,
Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion, Discrete Contin. Dyn. Syst. Ser. A, 39 (2019), 3413-3441.
doi: 10.3934/dcds.2019141. |
[13] |
N. Mizoguchi and P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 31 (2014), 851-875.
doi: 10.1016/j.anihpc.2013.07.007. |
[14] |
C. Mu, L. Wang, P. Zheng and Q. Zhang,
Global existence and boundedness of classical solutions to a parabolic-parabolic chemotaxis system, Nonlinear Anal.: Real World Appl., 14 (2013), 1634-1642.
doi: 10.1016/j.nonrwa.2012.10.022. |
[15] |
N. Tania, B. Vanderlei, J. P. Heath and L. Edelstein-Keshet, Role of social interactions in dunamic patterns of resource pathches and forager aggregation, Proc. Natl. Acad. Sci. USA, 109 (2012), 11228-11233. Google Scholar |
[16] |
Y. Tao,
Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl, 381 (2011), 521-529.
doi: 10.1016/j.jmaa.2011.02.041. |
[17] |
Y. Tao and M. Winkler,
Eventual smoothness and stabilization of larege-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differential Equations, 252 (2012), 2520-2543.
doi: 10.1016/j.jde.2011.07.010. |
[18] |
Y. Tao and M. Winkler,
Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Z. Angew. Math. Phys., 66 (2015), 2555-2573.
doi: 10.1007/s00033-015-0541-y. |
[19] |
Y. Tao and M. Winkler,
Large time behavior in a forager-exploiter model with differnet taxis strategies for two groups in search of food, Math. Models Methods Appl. Sci., 29 (2019), 2151-2182.
doi: 10.1142/S021820251950043X. |
[20] |
J. Wang and M. Wang, Global bounded solution of the higher-dimensional forager-exploixer modle with/without growth sources, Math. Models Methods Appl. Sci., 30 (2020), 1297-1323.
doi: 10.1142/S0218202520500232. |
[21] |
H. Wang and Y. Li,
Boundedness in prey-taxis system with rotational flux terms, Commun. pur Appl.Anal, 19 (2020), 4839-4851.
doi: 10.3934/cpaa.2020214. |
[22] |
M. Winkler,
Global generalized solutions to a multi-dimensional doubly tactic resource consumption model accounting for social interactions, Math. Models Methods Appl. Sci., 29 (2019), 373-418.
doi: 10.1142/S021820251950012X. |
[23] |
M. Winkler,
Aggregation vs.global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2950.
doi: 10.1016/j.jde.2010.02.008. |
show all references
References:
[1] |
H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces, Differential Operators and Nonlinear Analysis, in: Teubner-Texte Math., 133 1993, 9-126.
doi: 10.1007/978-3-663-11336-2_1. |
[2] |
T. Black,
Global generalized solutions to a forager-exploiter model with superlinear degradation and theri eventual regularity properties, Math. Models Methods Appl. Sci., 30 (2020), 1075-1117.
doi: 10.1142/S0218202520400072. |
[3] |
X. Cao,
Global radial renormalized solution to a producer-scrounger model with singular sensitivities, Math. Models Methods Appl. Sci., 6 (2020), 1119-1165.
doi: 10.1142/S0218202520400084. |
[4] |
H. Chen, J.-M. Li and K. Wang,
On the vanishing viscosity limit of a chemotaxis model, Discrete Contin. Dyn. Syst. Ser. A, 40 (2020), 1963-1987.
doi: 10.3934/dcds.2020101. |
[5] |
A. Friedman, Partial Different Equations, Holt, Rinehart and Winston, New York, 1969. Google Scholar |
[6] |
Y. Giga and H. Sohr,
Abstrat $L^p$ estimates for the Cauchy problem with aaplications to the Navier-Sotkes equations in exterior domains, J. Funct. Anal., 102 (1991), 72-94.
doi: 10.1016/0022-1236(91)90136-S. |
[7] |
B. Hu and Y. Tao,
To the exclusion of blow-up in three-dimensional chemotaxis-growth model with indirect attractant production, Math. Models Methods Appl. Sci., 26 (2016), 2111-2128.
doi: 10.1142/S0218202516400091. |
[8] |
C. Jin,
Global classical solution and stability to a coupled chemotaxis-fluid model with logistic source, Discrete Contin. Dyn. Syst. Ser. A, 38 (2018), 3547-3566.
doi: 10.3934/dcds.2018150. |
[9] |
H.-Y. Jin and Z.-A. Wang,
Global stabilization of the full attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. Ser. A, 40 (2020), 3509-3527.
doi: 10.3934/dcds.2020027. |
[10] |
J. Lankeit and Y. Wang,
Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption, Discrete Contin. Dyn. Syst. Ser. A, 37 (2017), 6099-6121.
doi: 10.3934/dcds.2017262. |
[11] |
H. Li and Y. Tao,
Boundedness in a chemotaxis system with indirect signal production and generalized logistic source, Appl. Math. Lett., 77 (2018), 108-113.
doi: 10.1016/j.aml.2017.10.006. |
[12] |
L. Meng, J. Yuan and X. Zheng,
Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion, Discrete Contin. Dyn. Syst. Ser. A, 39 (2019), 3413-3441.
doi: 10.3934/dcds.2019141. |
[13] |
N. Mizoguchi and P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 31 (2014), 851-875.
doi: 10.1016/j.anihpc.2013.07.007. |
[14] |
C. Mu, L. Wang, P. Zheng and Q. Zhang,
Global existence and boundedness of classical solutions to a parabolic-parabolic chemotaxis system, Nonlinear Anal.: Real World Appl., 14 (2013), 1634-1642.
doi: 10.1016/j.nonrwa.2012.10.022. |
[15] |
N. Tania, B. Vanderlei, J. P. Heath and L. Edelstein-Keshet, Role of social interactions in dunamic patterns of resource pathches and forager aggregation, Proc. Natl. Acad. Sci. USA, 109 (2012), 11228-11233. Google Scholar |
[16] |
Y. Tao,
Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl, 381 (2011), 521-529.
doi: 10.1016/j.jmaa.2011.02.041. |
[17] |
Y. Tao and M. Winkler,
Eventual smoothness and stabilization of larege-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differential Equations, 252 (2012), 2520-2543.
doi: 10.1016/j.jde.2011.07.010. |
[18] |
Y. Tao and M. Winkler,
Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Z. Angew. Math. Phys., 66 (2015), 2555-2573.
doi: 10.1007/s00033-015-0541-y. |
[19] |
Y. Tao and M. Winkler,
Large time behavior in a forager-exploiter model with differnet taxis strategies for two groups in search of food, Math. Models Methods Appl. Sci., 29 (2019), 2151-2182.
doi: 10.1142/S021820251950043X. |
[20] |
J. Wang and M. Wang, Global bounded solution of the higher-dimensional forager-exploixer modle with/without growth sources, Math. Models Methods Appl. Sci., 30 (2020), 1297-1323.
doi: 10.1142/S0218202520500232. |
[21] |
H. Wang and Y. Li,
Boundedness in prey-taxis system with rotational flux terms, Commun. pur Appl.Anal, 19 (2020), 4839-4851.
doi: 10.3934/cpaa.2020214. |
[22] |
M. Winkler,
Global generalized solutions to a multi-dimensional doubly tactic resource consumption model accounting for social interactions, Math. Models Methods Appl. Sci., 29 (2019), 373-418.
doi: 10.1142/S021820251950012X. |
[23] |
M. Winkler,
Aggregation vs.global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2950.
doi: 10.1016/j.jde.2010.02.008. |
[1] |
Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194 |
[2] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[3] |
Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186 |
[4] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[5] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[6] |
Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198 |
[7] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[8] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[9] |
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101 |
[10] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
[11] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[12] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[13] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[14] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[15] |
Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209 |
[16] |
Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011 |
[17] |
Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021018 |
[18] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[19] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[20] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]