-
Previous Article
On multiplicity of semi-classical solutions to nonlinear Dirac equations of space-dimension $ n $
- DCDS Home
- This Issue
-
Next Article
On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $
The Littlewood-Paley $ pth $-order moments in three-dimensional MHD turbulence
School of Mathematics and Systems Science, Beihang University, Beijing 100191, China |
In this paper, we consider the Littlewood-Paley $ p $th-order ($ 1\le p<\infty $) moments of the three-dimensional MHD periodic equations, which are defined by the infinite-time and space average of $ L^p $-norm of velocity and magnetic fields involved in the spectral cut-off operator $ \dot\Delta_m $. Our results imply that in some cases, $ k^{-\frac{1}{3}} $ is an upper bound at length scale $ 1/k $. This coincides with the scaling law of many observations on astrophysical systems and simulations in terms of 3D MHD turbulence.
References:
[1] |
H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, 343, Springer-Verlag, 2011.
doi: 10.1007%2F978-3-642-16830-7. |
[2] |
A. Basu and J. K. Bhattacharjee, Universal properties of three-dimensional magnetohydrodynamic turbulence: do Alfvén waves matter?, J. Stat. Mech., 2005 (2005), P07002.
doi: 10.1088/1742-5468/2005/07/P07002. |
[3] |
A. Basu, A. Sain, S. K. Dhar and R. Pandit,
Multiscaling in models of magnetohydrodynamic turbulence, Phys. Rev. Lett., 81 (1998), 2687-2690.
doi: 10.1103/PhysRevLett.81.2687. |
[4] |
D. Biskamp and W-C. Müller,
Scaling properties of three-dimensional isotropic magnetohydrodynamic turbulence, Phys. Plasmas, 7 (2000), 4889-4900.
doi: 10.1063/1.1322562. |
[5] |
M. Cannone, Harmonic analysis tools for solving incompressible Navier-Stokes equations, Handbook of Mathmatical Fluid Dynamics vol 3,161–244, North-Holland, Amsterdam, 2004. |
[6] |
Q. Chen, C. Miao and Z. Zhang,
A new Bernstein's inequality and the 2D dissipative quasi-geostrophic equation, Comm. Math. Phys., 271 (2007), 821-838.
doi: 10.1007/s00220-007-0193-7. |
[7] |
Q. Chen, C. Miao and Z. Zhang,
On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations, Comm. Math. Phys., 284 (2008), 919-930.
doi: 10.1007/s00220-008-0545-y. |
[8] |
Q. Chen, C. Miao and Z. Zhang,
On the well-posedness of the ideal MHD equations in the Triebel-Lizorkin spaces, Arch. Ration. Mech. Anal., 195 (2010), 561-578.
doi: 10.1007/s00205-008-0213-6. |
[9] |
J. Cho, E. T. Vishniac and A. Lazarian,
Simulations of magnetohydrodynamic turbulence in a strongly magnetized medium, Astrophys. J., 564 (2002), 291-301.
doi: 10.1086/324186. |
[10] |
J. Cho and E. T. Vishniac,
The anisotropy of magnetohydrodynamic Alfvénic turbulence, Astrophys. J., 539 (2000), 273-282.
doi: 10.1086/309213. |
[11] |
P. Constantin, Euler equations, Navier-Stokes equations and turbulence, in Mathematical Foundation of Turbulent Viscous Flows, Lecture Notes in Math. Vol. 1871, Berlin: Springer, 2006, 1–43.
doi: 10.1007%2F11545989_1. |
[12] |
P. Constantin,
The Littlewood-Paley spectrum in two-dimensional turbulence, Theor. Comput. Fluid Dyn., 9 (1997), 183-189.
doi: 10.1007/s001620050039. |
[13] |
E. Falgarone and T. Passot, Turbulence and Magnetic Fields in Astrophysics, Lecture Notes in Physics, Springer, 2003.
doi: 10.1007%2F3-540-36238-X. |
[14] |
Y. Gupta, B. J. Rickett and W. A. Coles,
Refractive interstellar scintillation of pulsar intensities at 74 MHz, Astrophysical J., 403 (1993), 183-201.
doi: 10.1086/172193. |
[15] |
E. Hopf,
Über die anfangswertaufgabe für die hydrodynamischen grundgleichungen, Math. Nachr., 4 (1951), 213-231.
doi: 10.1002/mana.3210040121. |
[16] |
P. S. Iroshnikov,
Turbulence of a conducting fluid in a strong magnetic field, Soviet Astronom. AJ, 7 (1964), 566-571.
|
[17] |
A. N. Kolmogorov,
The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Proceedings of the Royal Society A, 434 (1991), 9-13.
doi: 10.1098/rspa.1991.0075. |
[18] |
A. N. Kolmogorov,
Dissipation of energy in the locally isotropic turbulence, Proceedings of the Royal Society A, 434 (1991), 15-17.
doi: 10.1098/rspa.1991.0076. |
[19] |
R. H. Kraichnan,
Lagrangian-history closure approximation for turbulence, Phys. Fluids, 8 (1965), 575-598.
doi: 10.1063/1.1761271. |
[20] |
J. Leray,
Sur le mouvement d'un liquide visqueux emplissant l'espace., Acta Math., 63 (1934), 193-248.
doi: 10.1007/BF02547354. |
[21] | C. Miao, J. Wu and Z. Zhang, Littlewood-Paley Theory and Applications to Fluid Dynamics Equations, Monographs on Modern pure mathematics, No. 142, Beijing: Science Press, 2012. Google Scholar |
[22] |
W-C. Müller and D. Biskamp,
Scaling properties of three-dimensional magnetohydrodynamic turbulence, Phys. Rev. Lett., 84 (2000), 475-478.
doi: 10.1103/PhysRevLett.84.475. |
[23] |
F. Otto and F. Ramos,
Universal bounds for the Littlewood-Paley first-order moments of the 3D Navier-Stokes equations, Comm. Math. Phys., 300 (2010), 301-315.
doi: 10.1007/s00220-010-1098-4. |
[24] |
S. R. Spangler and C. R. Gwinn, Evidence for an inner scale to the density turbulence in the interstellar medium, Astrophys. J., 353 (1990), L29–L32.
doi: 10.1086/185700. |
[25] |
J. Wu,
Regularity criteria for the generalized MHD equations, Comm. Partial Differential Equations, 33 (2008), 285-306.
doi: 10.1080/03605300701382530. |
show all references
References:
[1] |
H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, 343, Springer-Verlag, 2011.
doi: 10.1007%2F978-3-642-16830-7. |
[2] |
A. Basu and J. K. Bhattacharjee, Universal properties of three-dimensional magnetohydrodynamic turbulence: do Alfvén waves matter?, J. Stat. Mech., 2005 (2005), P07002.
doi: 10.1088/1742-5468/2005/07/P07002. |
[3] |
A. Basu, A. Sain, S. K. Dhar and R. Pandit,
Multiscaling in models of magnetohydrodynamic turbulence, Phys. Rev. Lett., 81 (1998), 2687-2690.
doi: 10.1103/PhysRevLett.81.2687. |
[4] |
D. Biskamp and W-C. Müller,
Scaling properties of three-dimensional isotropic magnetohydrodynamic turbulence, Phys. Plasmas, 7 (2000), 4889-4900.
doi: 10.1063/1.1322562. |
[5] |
M. Cannone, Harmonic analysis tools for solving incompressible Navier-Stokes equations, Handbook of Mathmatical Fluid Dynamics vol 3,161–244, North-Holland, Amsterdam, 2004. |
[6] |
Q. Chen, C. Miao and Z. Zhang,
A new Bernstein's inequality and the 2D dissipative quasi-geostrophic equation, Comm. Math. Phys., 271 (2007), 821-838.
doi: 10.1007/s00220-007-0193-7. |
[7] |
Q. Chen, C. Miao and Z. Zhang,
On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations, Comm. Math. Phys., 284 (2008), 919-930.
doi: 10.1007/s00220-008-0545-y. |
[8] |
Q. Chen, C. Miao and Z. Zhang,
On the well-posedness of the ideal MHD equations in the Triebel-Lizorkin spaces, Arch. Ration. Mech. Anal., 195 (2010), 561-578.
doi: 10.1007/s00205-008-0213-6. |
[9] |
J. Cho, E. T. Vishniac and A. Lazarian,
Simulations of magnetohydrodynamic turbulence in a strongly magnetized medium, Astrophys. J., 564 (2002), 291-301.
doi: 10.1086/324186. |
[10] |
J. Cho and E. T. Vishniac,
The anisotropy of magnetohydrodynamic Alfvénic turbulence, Astrophys. J., 539 (2000), 273-282.
doi: 10.1086/309213. |
[11] |
P. Constantin, Euler equations, Navier-Stokes equations and turbulence, in Mathematical Foundation of Turbulent Viscous Flows, Lecture Notes in Math. Vol. 1871, Berlin: Springer, 2006, 1–43.
doi: 10.1007%2F11545989_1. |
[12] |
P. Constantin,
The Littlewood-Paley spectrum in two-dimensional turbulence, Theor. Comput. Fluid Dyn., 9 (1997), 183-189.
doi: 10.1007/s001620050039. |
[13] |
E. Falgarone and T. Passot, Turbulence and Magnetic Fields in Astrophysics, Lecture Notes in Physics, Springer, 2003.
doi: 10.1007%2F3-540-36238-X. |
[14] |
Y. Gupta, B. J. Rickett and W. A. Coles,
Refractive interstellar scintillation of pulsar intensities at 74 MHz, Astrophysical J., 403 (1993), 183-201.
doi: 10.1086/172193. |
[15] |
E. Hopf,
Über die anfangswertaufgabe für die hydrodynamischen grundgleichungen, Math. Nachr., 4 (1951), 213-231.
doi: 10.1002/mana.3210040121. |
[16] |
P. S. Iroshnikov,
Turbulence of a conducting fluid in a strong magnetic field, Soviet Astronom. AJ, 7 (1964), 566-571.
|
[17] |
A. N. Kolmogorov,
The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Proceedings of the Royal Society A, 434 (1991), 9-13.
doi: 10.1098/rspa.1991.0075. |
[18] |
A. N. Kolmogorov,
Dissipation of energy in the locally isotropic turbulence, Proceedings of the Royal Society A, 434 (1991), 15-17.
doi: 10.1098/rspa.1991.0076. |
[19] |
R. H. Kraichnan,
Lagrangian-history closure approximation for turbulence, Phys. Fluids, 8 (1965), 575-598.
doi: 10.1063/1.1761271. |
[20] |
J. Leray,
Sur le mouvement d'un liquide visqueux emplissant l'espace., Acta Math., 63 (1934), 193-248.
doi: 10.1007/BF02547354. |
[21] | C. Miao, J. Wu and Z. Zhang, Littlewood-Paley Theory and Applications to Fluid Dynamics Equations, Monographs on Modern pure mathematics, No. 142, Beijing: Science Press, 2012. Google Scholar |
[22] |
W-C. Müller and D. Biskamp,
Scaling properties of three-dimensional magnetohydrodynamic turbulence, Phys. Rev. Lett., 84 (2000), 475-478.
doi: 10.1103/PhysRevLett.84.475. |
[23] |
F. Otto and F. Ramos,
Universal bounds for the Littlewood-Paley first-order moments of the 3D Navier-Stokes equations, Comm. Math. Phys., 300 (2010), 301-315.
doi: 10.1007/s00220-010-1098-4. |
[24] |
S. R. Spangler and C. R. Gwinn, Evidence for an inner scale to the density turbulence in the interstellar medium, Astrophys. J., 353 (1990), L29–L32.
doi: 10.1086/185700. |
[25] |
J. Wu,
Regularity criteria for the generalized MHD equations, Comm. Partial Differential Equations, 33 (2008), 285-306.
doi: 10.1080/03605300701382530. |
[1] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[2] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[3] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[4] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[5] |
Rafael G. L. D'Oliveira, Marcelo Firer. Minimum dimensional Hamming embeddings. Advances in Mathematics of Communications, 2017, 11 (2) : 359-366. doi: 10.3934/amc.2017029 |
[6] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[7] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[8] |
Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021 |
[9] |
F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605 |
[10] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[11] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[12] |
Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149 |
[13] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[14] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[15] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[16] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[17] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[18] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[19] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
[20] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]