doi: 10.3934/dcds.2020400

Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media

1. 

Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, China

2. 

Institute of Liberal Arts and Sciences, Tohoku University, Sendai, 980-8576, Japan$ ^\dagger $

* Corresponding author: Conghui Zhang

Currently, Mathematical Institute, Tohoku University, Sendai, 980-8578.
Dedicated to the memory of the late Professor Yuzo Hosono

Received  March 2020 Revised  September 2020 Published  December 2020

Fund Project: This work is supported in part by JSPS Kakenhi, Grant Numbers 16KT0128 and 19K03557; CHZ is sponsored by the China Scholarship Council

This paper is concerned with the existence and stability of steady states of a reaction-diffusion-ODE system arising from the theory of biological pattern formation. We are interested in spontaneous emergence of patterns from spatially heterogeneous environments, hence assume that all coefficients in the equations can depend on the spatial variable. We give some sufficient conditions on the coefficients which guarantee the existence of far-from-the-equilibrium patterns with jump discontinuity and then verify their stability in a weak sense. Our conditions cover the case where the number of equilibria of the kinetic system (i.e., without diffusion) changes from one to three in the spatial interval, which is not obtained by a small perturbation of constant coefficients. Moreover, we consider the asymptotic behavior of steady states as the diffusion coefficient tends to infinity. Some examples and numerical simulations are given to illustrate the theoretical results.

Citation: Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020400
References:
[1]

D. G. AronsonA. Tesei and H. Weinberger, A density-dependent diffusion system with stable discontinuous stationary solutions, Ann. Mat. Pura Appl., 152 (1988), 259-280.  doi: 10.1007/BF01766153.  Google Scholar

[2]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley and Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296.  Google Scholar

[3]

S. HärtingA. Marciniak-Czochra and I. Takagi, Stable patterns with jump discontinuity in systems with Turing instability and hysteresis, Discrete Contin. Dyn. Syst., 37 (2017), 757-800.  doi: 10.3934/dcds.2017032.  Google Scholar

[4]

Y. LiA. Marciniak-CzochraI. Takagi and B. Y. Wu, Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis,, Hiroshima Math. J., 47 (2017), 217-247.  doi: 10.32917/hmj/1499392826.  Google Scholar

[5]

A. Marciniak-Czochra, Receptor-based models with diffusion-driven instability for pattern formation in hydra,, J. Biol. Systems, 11 (2003), 293-324.  doi: 10.1142/S0218339003000889.  Google Scholar

[6]

A. Marciniak-Czochra, Receptor-based models with hysteresis for pattern formation in Hydra,, Math. Biosci., 199 (2006), 97-119.  doi: 10.1016/j.mbs.2005.10.004.  Google Scholar

[7]

A. Marciniak-CzochraM. Nakayama and I. Takagi, Pattern formation in a diffusion-ODE model with hysteresis, Differential Integral Equations, 28 (2015), 655-694.   Google Scholar

[8]

M. MimuraM. Tabata and Y. Hosono, Multiple solutions of two-point boundary value problems of Neumann type with a small parameter,, SIAM J. Math. Anal., 11 (1980), 613-631.  doi: 10.1137/0511057.  Google Scholar

[9]

J. D. Murray, Mathematical Biology. II: Spatial Models and Biomedical Applications, Third edition, Springer, 2003.  Google Scholar

[10]

J. A. SherratP. K. MainiW. Jäger and W. M$\ddot{\mathrm{u}}$ller, A receptor-based model for pattern formation in hydra, Forma, 10 (1995), 77-95.   Google Scholar

[11]

I. Takagi and H. Yamamoto, Locator function for concentration points in a spatially heterogeneous semilinear Neumann problem,, Indiana Univ. Math. J., 68 (2019), 63-103.  doi: 10.1512/iumj.2019.68.7560.  Google Scholar

[12]

A. M. Turing, The chemical basis of morphogenesis,, Philos. Trans. Roy. Soc. Lond Ser. B, 237 (1952), 37-72.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[13]

J. C. Wei and M. Winter, Mathematical Aspects of Pattern Formation in Biological Systems, Applied Mathematical Sciences, Springer, London, 2014. doi: 10.1007/978-1-4471-5526-3.  Google Scholar

[14]

H. F. Weinberger, A simple system with a continuum of stable inhomogeneous steady states, Nonlinear Partial Differential Equations in Applied Science; Proceedings of the U.S.-Japan Seminar, North-Holland Math. Stud., 81 (1983), 345–359.  Google Scholar

show all references

References:
[1]

D. G. AronsonA. Tesei and H. Weinberger, A density-dependent diffusion system with stable discontinuous stationary solutions, Ann. Mat. Pura Appl., 152 (1988), 259-280.  doi: 10.1007/BF01766153.  Google Scholar

[2]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley and Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296.  Google Scholar

[3]

S. HärtingA. Marciniak-Czochra and I. Takagi, Stable patterns with jump discontinuity in systems with Turing instability and hysteresis, Discrete Contin. Dyn. Syst., 37 (2017), 757-800.  doi: 10.3934/dcds.2017032.  Google Scholar

[4]

Y. LiA. Marciniak-CzochraI. Takagi and B. Y. Wu, Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis,, Hiroshima Math. J., 47 (2017), 217-247.  doi: 10.32917/hmj/1499392826.  Google Scholar

[5]

A. Marciniak-Czochra, Receptor-based models with diffusion-driven instability for pattern formation in hydra,, J. Biol. Systems, 11 (2003), 293-324.  doi: 10.1142/S0218339003000889.  Google Scholar

[6]

A. Marciniak-Czochra, Receptor-based models with hysteresis for pattern formation in Hydra,, Math. Biosci., 199 (2006), 97-119.  doi: 10.1016/j.mbs.2005.10.004.  Google Scholar

[7]

A. Marciniak-CzochraM. Nakayama and I. Takagi, Pattern formation in a diffusion-ODE model with hysteresis, Differential Integral Equations, 28 (2015), 655-694.   Google Scholar

[8]

M. MimuraM. Tabata and Y. Hosono, Multiple solutions of two-point boundary value problems of Neumann type with a small parameter,, SIAM J. Math. Anal., 11 (1980), 613-631.  doi: 10.1137/0511057.  Google Scholar

[9]

J. D. Murray, Mathematical Biology. II: Spatial Models and Biomedical Applications, Third edition, Springer, 2003.  Google Scholar

[10]

J. A. SherratP. K. MainiW. Jäger and W. M$\ddot{\mathrm{u}}$ller, A receptor-based model for pattern formation in hydra, Forma, 10 (1995), 77-95.   Google Scholar

[11]

I. Takagi and H. Yamamoto, Locator function for concentration points in a spatially heterogeneous semilinear Neumann problem,, Indiana Univ. Math. J., 68 (2019), 63-103.  doi: 10.1512/iumj.2019.68.7560.  Google Scholar

[12]

A. M. Turing, The chemical basis of morphogenesis,, Philos. Trans. Roy. Soc. Lond Ser. B, 237 (1952), 37-72.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[13]

J. C. Wei and M. Winter, Mathematical Aspects of Pattern Formation in Biological Systems, Applied Mathematical Sciences, Springer, London, 2014. doi: 10.1007/978-1-4471-5526-3.  Google Scholar

[14]

H. F. Weinberger, A simple system with a continuum of stable inhomogeneous steady states, Nonlinear Partial Differential Equations in Applied Science; Proceedings of the U.S.-Japan Seminar, North-Holland Math. Stud., 81 (1983), 345–359.  Google Scholar

Figure 2.  Nullclines $ f(u,v) = 0 $ and $ g(u,v) = 0 $. The red curve represents $ f(u,v) = 0 $, while the blue curve represents $ g(u,v) = 0. $
Figure 1.  The relationship between $ X_{i,\beta} $ and $ Y_{i,\beta} $. Cases (a) and (b) are exclusive each other; and cases (c) and (d) are exclusive each other. Theorem 3.2 treats cases (a) and (c); Theorem 3.1 (i) deals with case (a); Theorem 3.1 (ii) deals with case (c) and Theorem 3.3 treats cases (b) and (d)
Figure 3.  Pattern formation in Example 1. The red curve represents receptor; the blue curve represents ligand; light blue is $ \mu_{2} $; green is $ m_{1}(x) $ and brown is $ m_{2}(x) $
Figure 4.  Pattern formation in Example 2. The red curve represents receptor; the blue curve represents ligand; light blue is $ \mu_{2}(x) $ and brown is $ m_{2}(x) $
Figure 5.  Pattern formation in Example 3. The red curve represents receptor; the blue curve represents ligand; light blue is $ \mu_{2}(x) $; green is $ m_{1}(x) $ and brown is $ m_{2}(x) $
[1]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[2]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[3]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[4]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[5]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[6]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[7]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[8]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[9]

Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021039

[10]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[11]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[12]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[13]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[14]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[15]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[16]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[17]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[18]

Israa Mohammed Khudher, Yahya Ismail Ibrahim, Suhaib Abduljabbar Altamir. Individual biometrics pattern based artificial image analysis techniques. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2020056

[19]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[20]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (41)
  • HTML views (102)
  • Cited by (0)

Other articles
by authors

[Back to Top]