
-
Previous Article
Complex planar Hamiltonian systems: Linearization and dynamics
- DCDS Home
- This Issue
-
Next Article
Approximation properties of Lüroth expansions
Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media
1. | Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, China |
2. | Institute of Liberal Arts and Sciences, Tohoku University, Sendai, 980-8576, Japan$ ^\dagger $ |
This paper is concerned with the existence and stability of steady states of a reaction-diffusion-ODE system arising from the theory of biological pattern formation. We are interested in spontaneous emergence of patterns from spatially heterogeneous environments, hence assume that all coefficients in the equations can depend on the spatial variable. We give some sufficient conditions on the coefficients which guarantee the existence of far-from-the-equilibrium patterns with jump discontinuity and then verify their stability in a weak sense. Our conditions cover the case where the number of equilibria of the kinetic system (i.e., without diffusion) changes from one to three in the spatial interval, which is not obtained by a small perturbation of constant coefficients. Moreover, we consider the asymptotic behavior of steady states as the diffusion coefficient tends to infinity. Some examples and numerical simulations are given to illustrate the theoretical results.
References:
[1] |
D. G. Aronson, A. Tesei and H. Weinberger,
A density-dependent diffusion system with stable discontinuous stationary solutions, Ann. Mat. Pura Appl., 152 (1988), 259-280.
doi: 10.1007/BF01766153. |
[2] |
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley and Sons, Ltd., Chichester, 2003.
doi: 10.1002/0470871296. |
[3] |
S. Härting, A. Marciniak-Czochra and I. Takagi,
Stable patterns with jump discontinuity in systems with Turing instability and hysteresis, Discrete Contin. Dyn. Syst., 37 (2017), 757-800.
doi: 10.3934/dcds.2017032. |
[4] |
Y. Li, A. Marciniak-Czochra, I. Takagi and B. Y. Wu,
Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis,, Hiroshima Math. J., 47 (2017), 217-247.
doi: 10.32917/hmj/1499392826. |
[5] |
A. Marciniak-Czochra,
Receptor-based models with diffusion-driven instability for pattern formation in hydra,, J. Biol. Systems, 11 (2003), 293-324.
doi: 10.1142/S0218339003000889. |
[6] |
A. Marciniak-Czochra,
Receptor-based models with hysteresis for pattern formation in Hydra,, Math. Biosci., 199 (2006), 97-119.
doi: 10.1016/j.mbs.2005.10.004. |
[7] |
A. Marciniak-Czochra, M. Nakayama and I. Takagi,
Pattern formation in a diffusion-ODE model with hysteresis, Differential Integral Equations, 28 (2015), 655-694.
|
[8] |
M. Mimura, M. Tabata and Y. Hosono,
Multiple solutions of two-point boundary value problems of Neumann type with a small parameter,, SIAM J. Math. Anal., 11 (1980), 613-631.
doi: 10.1137/0511057. |
[9] |
J. D. Murray, Mathematical Biology. II: Spatial Models and Biomedical Applications, Third edition, Springer, 2003. |
[10] |
J. A. Sherrat, P. K. Maini, W. Jäger and W. M$\ddot{\mathrm{u}}$ller, A receptor-based model for pattern formation in hydra, Forma, 10 (1995), 77-95. Google Scholar |
[11] |
I. Takagi and H. Yamamoto,
Locator function for concentration points in a spatially heterogeneous semilinear Neumann problem,, Indiana Univ. Math. J., 68 (2019), 63-103.
doi: 10.1512/iumj.2019.68.7560. |
[12] |
A. M. Turing,
The chemical basis of morphogenesis,, Philos. Trans. Roy. Soc. Lond Ser. B, 237 (1952), 37-72.
doi: 10.1098/rstb.1952.0012. |
[13] |
J. C. Wei and M. Winter, Mathematical Aspects of Pattern Formation in Biological Systems, Applied Mathematical Sciences, Springer, London, 2014.
doi: 10.1007/978-1-4471-5526-3. |
[14] |
H. F. Weinberger, A simple system with a continuum of stable inhomogeneous steady states, Nonlinear Partial Differential Equations in Applied Science; Proceedings of the U.S.-Japan Seminar, North-Holland Math. Stud., 81 (1983), 345–359. |
show all references
References:
[1] |
D. G. Aronson, A. Tesei and H. Weinberger,
A density-dependent diffusion system with stable discontinuous stationary solutions, Ann. Mat. Pura Appl., 152 (1988), 259-280.
doi: 10.1007/BF01766153. |
[2] |
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley and Sons, Ltd., Chichester, 2003.
doi: 10.1002/0470871296. |
[3] |
S. Härting, A. Marciniak-Czochra and I. Takagi,
Stable patterns with jump discontinuity in systems with Turing instability and hysteresis, Discrete Contin. Dyn. Syst., 37 (2017), 757-800.
doi: 10.3934/dcds.2017032. |
[4] |
Y. Li, A. Marciniak-Czochra, I. Takagi and B. Y. Wu,
Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis,, Hiroshima Math. J., 47 (2017), 217-247.
doi: 10.32917/hmj/1499392826. |
[5] |
A. Marciniak-Czochra,
Receptor-based models with diffusion-driven instability for pattern formation in hydra,, J. Biol. Systems, 11 (2003), 293-324.
doi: 10.1142/S0218339003000889. |
[6] |
A. Marciniak-Czochra,
Receptor-based models with hysteresis for pattern formation in Hydra,, Math. Biosci., 199 (2006), 97-119.
doi: 10.1016/j.mbs.2005.10.004. |
[7] |
A. Marciniak-Czochra, M. Nakayama and I. Takagi,
Pattern formation in a diffusion-ODE model with hysteresis, Differential Integral Equations, 28 (2015), 655-694.
|
[8] |
M. Mimura, M. Tabata and Y. Hosono,
Multiple solutions of two-point boundary value problems of Neumann type with a small parameter,, SIAM J. Math. Anal., 11 (1980), 613-631.
doi: 10.1137/0511057. |
[9] |
J. D. Murray, Mathematical Biology. II: Spatial Models and Biomedical Applications, Third edition, Springer, 2003. |
[10] |
J. A. Sherrat, P. K. Maini, W. Jäger and W. M$\ddot{\mathrm{u}}$ller, A receptor-based model for pattern formation in hydra, Forma, 10 (1995), 77-95. Google Scholar |
[11] |
I. Takagi and H. Yamamoto,
Locator function for concentration points in a spatially heterogeneous semilinear Neumann problem,, Indiana Univ. Math. J., 68 (2019), 63-103.
doi: 10.1512/iumj.2019.68.7560. |
[12] |
A. M. Turing,
The chemical basis of morphogenesis,, Philos. Trans. Roy. Soc. Lond Ser. B, 237 (1952), 37-72.
doi: 10.1098/rstb.1952.0012. |
[13] |
J. C. Wei and M. Winter, Mathematical Aspects of Pattern Formation in Biological Systems, Applied Mathematical Sciences, Springer, London, 2014.
doi: 10.1007/978-1-4471-5526-3. |
[14] |
H. F. Weinberger, A simple system with a continuum of stable inhomogeneous steady states, Nonlinear Partial Differential Equations in Applied Science; Proceedings of the U.S.-Japan Seminar, North-Holland Math. Stud., 81 (1983), 345–359. |





[1] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[2] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[3] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[4] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[5] |
Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042 |
[6] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[7] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[8] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[9] |
Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021039 |
[10] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[11] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[12] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[13] |
Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197 |
[14] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[15] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[16] |
Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1 |
[17] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[18] |
Israa Mohammed Khudher, Yahya Ismail Ibrahim, Suhaib Abduljabbar Altamir. Individual biometrics pattern based artificial image analysis techniques. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2020056 |
[19] |
Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021 |
[20] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]