\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow

Abstract Full Text(HTML) Related Papers Cited by
  • The present work aims at the mathematical derivation of the equations for the isentropic flow from those for the non-isentropic flow for perfect gases in the whole space. Suppose that the following things hold for the entropy equation: (1). both conduction of heat and its generation by dissipation of mechanical energy are sufficiently weak(with the order of $ \varepsilon $); (2). initially the entropy $ S^{N}_ \varepsilon $ is around a constant $ c_S $, that is, $ S^{N}_ \varepsilon |_{t = 0} = c_S+O( \varepsilon ) $. Then the non-isentropic compressible Navier-Stokes equations admit a unique and global solution $ ( \rho^{N}_ \varepsilon , \, \boldsymbol{u}^{N}_ \varepsilon , \, S^{N}_ \varepsilon ) $ with the initial data $ ( \rho_0, \, \boldsymbol{u}_0, \, c_S+ \varepsilon S_0) $, which is a perturbation of the equilibrium $ (1, \boldsymbol{0}, c_S) $. Moreover, $ ( \rho^{N}_ \varepsilon , u^{N}_ \varepsilon ) $ can be approximated by $ ( \rho^{I}, \, u^{I}) $, the solution to the associated isentropic compressible Navier-Stokes equations equipped with the initial data $ ( \rho_0, \, \boldsymbol{u}_0) $, in the sense that

    $ \begin{eqnarray*} ( \rho^{N}_ \varepsilon (t), \, \boldsymbol{u}^{N}_ \varepsilon (t)) = ( \rho^{I}(t), \, \boldsymbol{u}^{I}(t))+O(\epsilon), \end{eqnarray*} $

    which holds globally in the so-called critical Besov spaces for the compressible Navier-Stokes equations.

    Mathematics Subject Classification: 35Q35, 35B40, 76N10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, , Grundlehren der Mathematischen Wissenschaften, Springer 2011. doi: 10.1007/978-3-642-16830-7.
    [2] J.-M. Bony, Calcul symbolique et propagation des singularités pour les $\mathop {\rm{q}}\limits^{\rm{'}} $uations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., 14 (1981), 209–246. doi: 10.24033/asens.1404.
    [3] F. Charve and R. Danchin, A global existence result for the compressible Navier-Stokes equations in the critical $L^p$ framework, Arch. Ration. Mech. Anal., 198 (2010), 233-271.  doi: 10.1007/s00205-010-0306-x.
    [4] Q. ChenC. Miao and Z. Zhang, Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities, Rev. Mat. Iberoam., 26 (2010), 915-946.  doi: 10.4171/RMI/621.
    [5] Q. ChenC. Miao and Z. Zhang, Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math., 63 (2010), 1173-1224.  doi: 10.1002/cpa.20325.
    [6] Q. ChenC. Miao and Z. Zhang, On the ill-posedness of the compressible Navier-Stokes equations in the critical Besov spaces., Rev. Mat. Iberoam., 31 (2015), 1375-1402.  doi: 10.4171/RMI/872.
    [7] N. Chikami and R. Danchin, On the well-posedness of the full compressible Navier-Stokes system in critical Besov spaces, J. Differential Equations, 258 (2015), 3435-3467.  doi: 10.1016/j.jde.2015.01.012.
    [8] R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579-614.  doi: 10.1007/s002220000078.
    [9] R. Danchin, Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations, 26 (2001), 1183-1233.  doi: 10.1081/PDE-100106132.
    [10] R. Danchin, Global existence in critical spaces for flows of compressible viscous and heat-conductive gases, Arch. Ration. Mech. Anal., 160 (2001), 1-39.  doi: 10.1007/s002050100155.
    [11] R. Danchin, Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density, Comm. Partial Differential Equations, 32 (2007), 1373-1397.  doi: 10.1080/03605300600910399.
    [12] R. Danchin and L. He, The incompressible limit in $L^p$ type critical spaces, Math. Ann., 366 (2016), 1365-1402.  doi: 10.1007/s00208-016-1361-x.
    [13] R. Danchin and P. B. Mucha, Compressible Navier-Stokes system: large solutions and incompressible limit, Adv. Math., 320 (2017), 904-925.  doi: 10.1016/j.aim.2017.09.025.
    [14] R. Danchin and J. Xu, Optimal Time-decay Estimates for the Compressible Navier-Stokes Equations in the Critical $L^p$Framework, Arch. Ration. Mech. Anal., 224 (2017), 53-90.  doi: 10.1007/s00205-016-1067-y.
    [15] D. Fang, T. Zhang and R. Zi, Global solutions to the isentropic compressible Navier-Stokes equations with a class of large initial data, SIAM J. Math. Anal., 50 (2018), 4983–5026. doi: 10.1137/17M1122062.
    [16] E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford Lecture Series in Mathematics and its Applications, 26. Oxford University Press, Oxford, 2004.
    [17] E. Feireisl and A. Novotný, Weak-strong uniqueness property for the full Navier-Stokes-Fourier system., Arch. Ration. Mech. Anal., 204 (2012), 683-706.  doi: 10.1007/s00205-011-0490-3.
    [18] B. Haspot, Existence of global strong solutions in critical spaces for barotropic viscous fluids, Arch. Ration. Mech. Anal., 202 (2011), 427-460.  doi: 10.1007/s00205-011-0430-2.
    [19] B. Haspot, Global existence of strong solutions for viscous shallow water system with large initial data on the rotational part, J. Differential Equations, 262 (2017), 4931-4978.  doi: 10.1016/j.jde.2017.01.010.
    [20] X. HuangJ. Li and Z. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three dimensional isentropic compressible Navier-Stokes equations, Comm. Pure Appl. Math., 65 (2012), 549-585.  doi: 10.1002/cpa.21382.
    [21] X. Huang and J. Li, Global classical and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillations, Arch. Ration. Mech. Anal., 227 (2018), 995-1059.  doi: 10.1007/s00205-017-1188-y.
    [22] A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A Math. Sci., 55 (1979), 337-342.  doi: 10.3792/pjaa.55.337.
    [23] A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.  doi: 10.1215/kjm/1250522322.
    [24] J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général, Bulletin de la Soc. Math. de France, 90 (1962), 487-497.  doi: 10.24033/bsmf.1586.
  • 加载中
SHARE

Article Metrics

HTML views(383) PDF downloads(295) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return