• Previous Article
    Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families
  • DCDS Home
  • This Issue
  • Next Article
    Existence of solution for a class of heat equation in whole $ \mathbb{R}^N $
doi: 10.3934/dcds.2021009

On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions

1. 

Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan

2. 

Institute of Mathematics of the Academy of Sciences of the Czech Republic, Žitná 25, CZ-115 67 Praha 1, Czech Republic, Institute of Mathematics, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany

3. 

IMATH, EA 2134, Université de Toulon, BP 20132, 83957 La Garde, France

* Corresponding author: Jan Březina

Received  May 2020 Revised  October 2020 Published  January 2021

Fund Project: Jan Březina and Eduard Feireisl, The work of E.F. was partially supported by the Czech Sciences Foundation (GAČR), Grant Agreement 18-05974S. The Institute of Mathematics of the Academy of Sciences of the Czech Republic is supported by RVO:67985840.
Antonín Novotný, The work of A.N. was supported by Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (NRF-2019H1D3A2A01101128).

We consider the barotropic Navier–Stokes system describing the motion of a compressible Newtonian fluid in a bounded domain with in and out flux boundary conditions. We show that if the boundary velocity coincides with that of a rigid motion, all solutions converge to an equilibrium state for large times.

Citation: Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2021009
References:
[1]

G. Avalos and P. G. Geredeli, Exponential stability of a nondissipative, compressible flow-structure PDE model, J. Evol. Equ., 20 (2020), 1-38.  doi: 10.1007/s00028-019-00513-9.  Google Scholar

[2]

T. ChangB. J. Jin and A. Novotný, Compressible Navier-Stokes system with general inflow-outflow boundary data, SIAM J. Math. Anal., 51 (2019), 1238-1278.  doi: 10.1137/17M115089X.  Google Scholar

[3]

H. J. ChoeA. Novotný and M. Yang, Compressible Navier-Stokes system with hard sphere pressure law and general inflow-outflow boundary conditions, J. Differential Equations, 266 (2019), 3066-3099.  doi: 10.1016/j.jde.2018.08.049.  Google Scholar

[4]

E. Feireisl and H. Petzeltová, On the zero-velocity-limit solutions to the Navier-Stokes equations of compressible flow, Manuscr. Math., 97 (1998), 109-116.  doi: 10.1007/s002290050089.  Google Scholar

[5]

E. Feireisl and H. Petzeltová, Large-time behaviour of solutions to the Navier-Stokes equations of compressible flow, Arch. Rational Mech. Anal., 150 (1999), 77-96.  doi: 10.1007/s002050050181.  Google Scholar

[6]

E. Feireisl and D. Pražák, Asymptotic Behavior of Dynamical Systems in Fluid Mechanics, AIMS, Springfield, 2010. Google Scholar

[7]

P. G. Geredeli, A time domain approach for the exponential stability of a linearized compressible flow–structure pde system, Math. Meth. Appl. Sci., 2020. Early view. Google Scholar

[8]

V. Girinon, Navier-Stokes equations with nonhomogeneous boundary conditions in a bounded three-dimensional domain, J. Math. Fluid Mech., 13 (2011), 309-339.  doi: 10.1007/s00021-009-0018-x.  Google Scholar

[9]

Y.-S. Kwon and A. Novotný, Dissipative solutions to compressible Navier–Stokes equations with general inflow-outflow data: Existence, stability and weak strong uniqueness, J. Math. Fluid Mech., 2021 (in press). arXiv: 1905.02667. Google Scholar

[10]

B. Melinand and K. Zumbrun, Existence and stability of steady compressible Navier-Stokes solutions on a finite interval with noncharacteristic boundary conditions, Phys. D, 394 (2019), 16-25.  doi: 10.1016/j.physd.2019.01.006.  Google Scholar

[11]

A. Novotný and I. Straškraba, Stabilization of weak solutions to compressible Navier-Stokes equations, J. Math. Kyoto Univ., 40 (2000), 217-245.  doi: 10.1215/kjm/1250517713.  Google Scholar

[12]

A. Novotný and I. Straškraba, Convergence to equilibria for compressible Navier-Stokes equations with large data, Annali Mat. Pura Appl., 179 (2001), 263-287.  doi: 10.1007/BF02505958.  Google Scholar

[13]

Y. Shibata and K. Tanaka, Rate of convergence of non-stationary flow to the steady flow of compressible viscous fluid, Comput. Math. Appl., 53 (2007), 605-623.  doi: 10.1016/j.camwa.2006.02.030.  Google Scholar

[14]

S. UkaiT. Yang and H. Zhao, Convergence rate for the compressible Navier-Stokes equations with external force, J. Hyperbolic Differ. Equ., 3 (2006), 561-574.  doi: 10.1142/S0219891606000902.  Google Scholar

show all references

References:
[1]

G. Avalos and P. G. Geredeli, Exponential stability of a nondissipative, compressible flow-structure PDE model, J. Evol. Equ., 20 (2020), 1-38.  doi: 10.1007/s00028-019-00513-9.  Google Scholar

[2]

T. ChangB. J. Jin and A. Novotný, Compressible Navier-Stokes system with general inflow-outflow boundary data, SIAM J. Math. Anal., 51 (2019), 1238-1278.  doi: 10.1137/17M115089X.  Google Scholar

[3]

H. J. ChoeA. Novotný and M. Yang, Compressible Navier-Stokes system with hard sphere pressure law and general inflow-outflow boundary conditions, J. Differential Equations, 266 (2019), 3066-3099.  doi: 10.1016/j.jde.2018.08.049.  Google Scholar

[4]

E. Feireisl and H. Petzeltová, On the zero-velocity-limit solutions to the Navier-Stokes equations of compressible flow, Manuscr. Math., 97 (1998), 109-116.  doi: 10.1007/s002290050089.  Google Scholar

[5]

E. Feireisl and H. Petzeltová, Large-time behaviour of solutions to the Navier-Stokes equations of compressible flow, Arch. Rational Mech. Anal., 150 (1999), 77-96.  doi: 10.1007/s002050050181.  Google Scholar

[6]

E. Feireisl and D. Pražák, Asymptotic Behavior of Dynamical Systems in Fluid Mechanics, AIMS, Springfield, 2010. Google Scholar

[7]

P. G. Geredeli, A time domain approach for the exponential stability of a linearized compressible flow–structure pde system, Math. Meth. Appl. Sci., 2020. Early view. Google Scholar

[8]

V. Girinon, Navier-Stokes equations with nonhomogeneous boundary conditions in a bounded three-dimensional domain, J. Math. Fluid Mech., 13 (2011), 309-339.  doi: 10.1007/s00021-009-0018-x.  Google Scholar

[9]

Y.-S. Kwon and A. Novotný, Dissipative solutions to compressible Navier–Stokes equations with general inflow-outflow data: Existence, stability and weak strong uniqueness, J. Math. Fluid Mech., 2021 (in press). arXiv: 1905.02667. Google Scholar

[10]

B. Melinand and K. Zumbrun, Existence and stability of steady compressible Navier-Stokes solutions on a finite interval with noncharacteristic boundary conditions, Phys. D, 394 (2019), 16-25.  doi: 10.1016/j.physd.2019.01.006.  Google Scholar

[11]

A. Novotný and I. Straškraba, Stabilization of weak solutions to compressible Navier-Stokes equations, J. Math. Kyoto Univ., 40 (2000), 217-245.  doi: 10.1215/kjm/1250517713.  Google Scholar

[12]

A. Novotný and I. Straškraba, Convergence to equilibria for compressible Navier-Stokes equations with large data, Annali Mat. Pura Appl., 179 (2001), 263-287.  doi: 10.1007/BF02505958.  Google Scholar

[13]

Y. Shibata and K. Tanaka, Rate of convergence of non-stationary flow to the steady flow of compressible viscous fluid, Comput. Math. Appl., 53 (2007), 605-623.  doi: 10.1016/j.camwa.2006.02.030.  Google Scholar

[14]

S. UkaiT. Yang and H. Zhao, Convergence rate for the compressible Navier-Stokes equations with external force, J. Hyperbolic Differ. Equ., 3 (2006), 561-574.  doi: 10.1142/S0219891606000902.  Google Scholar

[1]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[2]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[3]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[4]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[5]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[6]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[7]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[8]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[9]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[10]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[11]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[12]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[13]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[14]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[15]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[16]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[17]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[18]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[19]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[20]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (14)
  • HTML views (84)
  • Cited by (0)

[Back to Top]