doi: 10.3934/dcds.2021012

A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo"

1. 

Dipartimento di Matematica e Geoscienze, Università di Trieste, P.le Europa 1, Trieste, Italy

2. 

Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università di Udine, Via delle Scienze 206, Udine, Italy

* Corresponding author: Alessandro Fonda

Received  November 2020 Published  January 2021

We prove the existence of bounded and periodic solutions for planar systems by introducing a notion of lower and upper solutions which generalizes the classical one for scalar second order equations. The proof relies on phase plane analysis; after suitably modifying the nonlinearities, the Ważewski theory provides a solution which remains bounded in the future. For the periodic problem, the Massera Theorem applies, yielding the existence result. We then show how our result generalizes some well known theorems on the existence of bounded and of periodic solutions. Finally, we provide some corollaries on the existence of almost periodic solutions for scalar second order equations.

Citation: Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2021012
References:
[1]

S. Ahmad, A nonstandard resonance problem for ordinary differential equations, Trans. Amer. Math. Soc., 323 (1991), 857-875.  doi: 10.1090/S0002-9947-1991-1010407-9.  Google Scholar

[2]

I. Barbălat, Applications du principe topologique de T. Ważewski aux équations différentielles du second ordre, Ann. Polon. Math., 5 (1958), 303-317.   Google Scholar

[3]

J. W. Bebernes and R. Wilhelmsen, A general boundary value problem technique, J. Differential Equations, 8 (1970), 404-415.  doi: 10.1016/0022-0396(70)90014-8.  Google Scholar

[4]

C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular $\phi$-Laplacian, J. Differential Equations, 243 (2007), 536-557.  doi: 10.1016/j.jde.2007.05.014.  Google Scholar

[5]

A. Cabada, An overview of the lower and upper solutions method with nonlinear boundary value conditions, Bound. Value Probl., 2011 (2011), Art. ID 893753, 18 pp. doi: 10.1155/2011/893753.  Google Scholar

[6]

C. Corduneanu, Soluţii aproape periodice ale ecuaţiilor diferenţiale neliniare de ordinul al doilea, Com. Acad. R. P. Romîne, 5 (1955), 793–797. Google Scholar

[7]

C. De Coster and P. Habets, Two-Point Boundary Value Problems, Lower and Upper Solutions, Elsevier, Amsterdam, 2006.  Google Scholar

[8]

A. M. Fink, Uniqueness theorems and almost periodic solutions to second order differential equations, J. Differential Equations, 4 (1968), 543-548.  doi: 10.1016/0022-0396(68)90004-1.  Google Scholar

[9]

A. Fonda, G. Klun and A. Sfecci, Non-well-ordered lower and upper solutions for semilinear systems of PDEs, preprint, 2020. Google Scholar

[10]

A. Fonda and R. Toader, Lower and upper solutions to semilinear boundary value problems: An abstract approach, Topol. Methods Nonlinear Anal., 38 (2011), 59-93.   Google Scholar

[11]

A. Fonda and F. Zanolin, Bounded solutions of nonlinear second order ordinary differential equations, Discrete Contin. Dynam. Systems, 4 (1998), 91-98.  doi: 10.3934/dcds.1998.4.91.  Google Scholar

[12]

P. Habets and R. L. Pouso, Examples of the nonexistence of a solution in the presence of upper and lower solutions, ANZIAM J., 44 (2003), 591-594.  doi: 10.1017/S1446181100012955.  Google Scholar

[13]

P. Hartman, Ordinary Differential Equations, Wiley and Sons, New York, 1964.  Google Scholar

[14]

L. K. Jackson and G. Klaasen, A variation of the topological method of Ważewski, SIAM J. Appl. Math., 20 (1971), 124-130.  doi: 10.1137/0120016.  Google Scholar

[15]

J. L. KaplanA. Lasota and J. A. Yorke, An application of the Ważewski retract method to boundary value problems, Zeszyty Nauk. Uniw. Jagielloń. Prace Mat., 16 (1974), 7-14.   Google Scholar

[16]

H.-W. Knobloch, Zwei Kriterien für die Existenz periodischer Lösungen von Differentialgleichungen zweiter Ordnung, Arch. Math., 14 (1963), 182-185.  doi: 10.1007/BF01234941.  Google Scholar

[17]

H.-W. Knobloch, Eine neue Methode zur Approximation periodischer Lösungen nicht-linearer Differentialgleichungen zweiter Ordnung, Math. Z., 82 (1963), 177-197.  doi: 10.1007/BF01111422.  Google Scholar

[18]

J. L. Massera, The existence of periodic solutions of systems of differential equations, Duke Math. J., 17 (1950), 457-475.   Google Scholar

[19]

J. Mawhin and J. R. Ward, Bounded solutions of some second order nonlinear differential equations, J. London Math. Soc., (2) 58 (1998), 733–747. doi: 10.1112/S0024610798006784.  Google Scholar

[20]

M. Nagumo, Über die Differentialgleichung $y" = f(t, y, y')$, Proc. Phys-Math. Soc. Japan, 19 (1937), 861-866.   Google Scholar

[21]

F. ObersnelP. Omari and S. Rivetti, Existence, regularity and stability properties of periodic solutions of a capillarity equation in the presence of lower and upper solutions, Nonlinear Anal. Real World Appl., 13 (2012), 2830-2852.  doi: 10.1016/j.nonrwa.2012.04.012.  Google Scholar

[22]

R. Ortega, A boundedness result of Landesman-Lazer type, Differential Integral Equations, 8 (1995), 729-734.   Google Scholar

[23]

R. Ortega, Periodic Differential Equations in the Plane. A Topological Perspective, De Gruyter, Berlin, 2019. doi: 10.1515/9783110551167.  Google Scholar

[24]

R. Ortega and M. Tarallo, Almost periodic upper and lower solutions, J. Differential Equations, 193 (2003), 343-358.  doi: 10.1016/S0022-0396(03)00130-X.  Google Scholar

[25]

R. Ortega and A. Tineo, Resonance and non-resonance in a problem of boundedness, Proc. Amer. Math. Soc., 124 (1996), 2089-2096.  doi: 10.1090/S0002-9939-96-03457-0.  Google Scholar

[26]

E. Picard, Sur l'application des méthodes d'approximations successives à l'étude de certaines équations différentielles ordinaires, J. Math. Pures Appl., 9 (1893), 217-271.   Google Scholar

[27]

F. Sadyrbaev, Ważewski method and upper and lower functions for higher order ordinary differential equations, Univ. Iagel. Acta Math., 36 (1998), 165-170.   Google Scholar

[28]

K. Schmitt, Bounded solutions of nonlinear second order differential equations, Duke Math. J., 36 (1969), 237-243.   Google Scholar

[29]

K. Schmitt and J. R. Ward, Almost periodic solutions of nonlinear second order differential equations, Results Math., 21 (1992), 190-199.  doi: 10.1007/BF03323078.  Google Scholar

[30]

G. Scorza Dragoni, Il problema dei valori ai limiti studiato in grande per le equazioni differenziali del secondo ordine, Math. Ann., 105 (1931), 133-143.  doi: 10.1007/BF01455811.  Google Scholar

[31]

R. Srzednicki, Ważewski method and Conley index, Handbook of Differential Equations (eds. A. Cañada, P. Drábek, A. Fonda) Elsevier/North-Holland, Amsterdam, 2004,591–684.  Google Scholar

[32]

N. Soave and G. Verzini, Bounded solutions for a forced bounded oscillator without friction, J. Differential Equations, 256 (2014), 2526-2558.  doi: 10.1016/j.jde.2014.01.015.  Google Scholar

[33]

M. Tarallo and Z. Zhou, Limit periodic upper and lower solutions in a generic sense, Discrete Contin. Dyn. Syst., 38 (2018), 293-309.  doi: 10.3934/dcds.2018014.  Google Scholar

[34]

J. Y. Wang, W. J. Gao and Z. H. Lin, Boundary value problems for general second order equations and similarity solutions to the Rayleigh problem, Tohoku Math. J., (2) 47 (1995), 327–344. doi: 10.2748/tmj/1178225520.  Google Scholar

[35]

T. Ważewski, Sur un principe topologique de l'examen de l'allure asymptotique des intégrales des équations différentielles ordinaires, Ann. Soc. Polon. Math., 20 (1947), 279-313.   Google Scholar

show all references

References:
[1]

S. Ahmad, A nonstandard resonance problem for ordinary differential equations, Trans. Amer. Math. Soc., 323 (1991), 857-875.  doi: 10.1090/S0002-9947-1991-1010407-9.  Google Scholar

[2]

I. Barbălat, Applications du principe topologique de T. Ważewski aux équations différentielles du second ordre, Ann. Polon. Math., 5 (1958), 303-317.   Google Scholar

[3]

J. W. Bebernes and R. Wilhelmsen, A general boundary value problem technique, J. Differential Equations, 8 (1970), 404-415.  doi: 10.1016/0022-0396(70)90014-8.  Google Scholar

[4]

C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular $\phi$-Laplacian, J. Differential Equations, 243 (2007), 536-557.  doi: 10.1016/j.jde.2007.05.014.  Google Scholar

[5]

A. Cabada, An overview of the lower and upper solutions method with nonlinear boundary value conditions, Bound. Value Probl., 2011 (2011), Art. ID 893753, 18 pp. doi: 10.1155/2011/893753.  Google Scholar

[6]

C. Corduneanu, Soluţii aproape periodice ale ecuaţiilor diferenţiale neliniare de ordinul al doilea, Com. Acad. R. P. Romîne, 5 (1955), 793–797. Google Scholar

[7]

C. De Coster and P. Habets, Two-Point Boundary Value Problems, Lower and Upper Solutions, Elsevier, Amsterdam, 2006.  Google Scholar

[8]

A. M. Fink, Uniqueness theorems and almost periodic solutions to second order differential equations, J. Differential Equations, 4 (1968), 543-548.  doi: 10.1016/0022-0396(68)90004-1.  Google Scholar

[9]

A. Fonda, G. Klun and A. Sfecci, Non-well-ordered lower and upper solutions for semilinear systems of PDEs, preprint, 2020. Google Scholar

[10]

A. Fonda and R. Toader, Lower and upper solutions to semilinear boundary value problems: An abstract approach, Topol. Methods Nonlinear Anal., 38 (2011), 59-93.   Google Scholar

[11]

A. Fonda and F. Zanolin, Bounded solutions of nonlinear second order ordinary differential equations, Discrete Contin. Dynam. Systems, 4 (1998), 91-98.  doi: 10.3934/dcds.1998.4.91.  Google Scholar

[12]

P. Habets and R. L. Pouso, Examples of the nonexistence of a solution in the presence of upper and lower solutions, ANZIAM J., 44 (2003), 591-594.  doi: 10.1017/S1446181100012955.  Google Scholar

[13]

P. Hartman, Ordinary Differential Equations, Wiley and Sons, New York, 1964.  Google Scholar

[14]

L. K. Jackson and G. Klaasen, A variation of the topological method of Ważewski, SIAM J. Appl. Math., 20 (1971), 124-130.  doi: 10.1137/0120016.  Google Scholar

[15]

J. L. KaplanA. Lasota and J. A. Yorke, An application of the Ważewski retract method to boundary value problems, Zeszyty Nauk. Uniw. Jagielloń. Prace Mat., 16 (1974), 7-14.   Google Scholar

[16]

H.-W. Knobloch, Zwei Kriterien für die Existenz periodischer Lösungen von Differentialgleichungen zweiter Ordnung, Arch. Math., 14 (1963), 182-185.  doi: 10.1007/BF01234941.  Google Scholar

[17]

H.-W. Knobloch, Eine neue Methode zur Approximation periodischer Lösungen nicht-linearer Differentialgleichungen zweiter Ordnung, Math. Z., 82 (1963), 177-197.  doi: 10.1007/BF01111422.  Google Scholar

[18]

J. L. Massera, The existence of periodic solutions of systems of differential equations, Duke Math. J., 17 (1950), 457-475.   Google Scholar

[19]

J. Mawhin and J. R. Ward, Bounded solutions of some second order nonlinear differential equations, J. London Math. Soc., (2) 58 (1998), 733–747. doi: 10.1112/S0024610798006784.  Google Scholar

[20]

M. Nagumo, Über die Differentialgleichung $y" = f(t, y, y')$, Proc. Phys-Math. Soc. Japan, 19 (1937), 861-866.   Google Scholar

[21]

F. ObersnelP. Omari and S. Rivetti, Existence, regularity and stability properties of periodic solutions of a capillarity equation in the presence of lower and upper solutions, Nonlinear Anal. Real World Appl., 13 (2012), 2830-2852.  doi: 10.1016/j.nonrwa.2012.04.012.  Google Scholar

[22]

R. Ortega, A boundedness result of Landesman-Lazer type, Differential Integral Equations, 8 (1995), 729-734.   Google Scholar

[23]

R. Ortega, Periodic Differential Equations in the Plane. A Topological Perspective, De Gruyter, Berlin, 2019. doi: 10.1515/9783110551167.  Google Scholar

[24]

R. Ortega and M. Tarallo, Almost periodic upper and lower solutions, J. Differential Equations, 193 (2003), 343-358.  doi: 10.1016/S0022-0396(03)00130-X.  Google Scholar

[25]

R. Ortega and A. Tineo, Resonance and non-resonance in a problem of boundedness, Proc. Amer. Math. Soc., 124 (1996), 2089-2096.  doi: 10.1090/S0002-9939-96-03457-0.  Google Scholar

[26]

E. Picard, Sur l'application des méthodes d'approximations successives à l'étude de certaines équations différentielles ordinaires, J. Math. Pures Appl., 9 (1893), 217-271.   Google Scholar

[27]

F. Sadyrbaev, Ważewski method and upper and lower functions for higher order ordinary differential equations, Univ. Iagel. Acta Math., 36 (1998), 165-170.   Google Scholar

[28]

K. Schmitt, Bounded solutions of nonlinear second order differential equations, Duke Math. J., 36 (1969), 237-243.   Google Scholar

[29]

K. Schmitt and J. R. Ward, Almost periodic solutions of nonlinear second order differential equations, Results Math., 21 (1992), 190-199.  doi: 10.1007/BF03323078.  Google Scholar

[30]

G. Scorza Dragoni, Il problema dei valori ai limiti studiato in grande per le equazioni differenziali del secondo ordine, Math. Ann., 105 (1931), 133-143.  doi: 10.1007/BF01455811.  Google Scholar

[31]

R. Srzednicki, Ważewski method and Conley index, Handbook of Differential Equations (eds. A. Cañada, P. Drábek, A. Fonda) Elsevier/North-Holland, Amsterdam, 2004,591–684.  Google Scholar

[32]

N. Soave and G. Verzini, Bounded solutions for a forced bounded oscillator without friction, J. Differential Equations, 256 (2014), 2526-2558.  doi: 10.1016/j.jde.2014.01.015.  Google Scholar

[33]

M. Tarallo and Z. Zhou, Limit periodic upper and lower solutions in a generic sense, Discrete Contin. Dyn. Syst., 38 (2018), 293-309.  doi: 10.3934/dcds.2018014.  Google Scholar

[34]

J. Y. Wang, W. J. Gao and Z. H. Lin, Boundary value problems for general second order equations and similarity solutions to the Rayleigh problem, Tohoku Math. J., (2) 47 (1995), 327–344. doi: 10.2748/tmj/1178225520.  Google Scholar

[35]

T. Ważewski, Sur un principe topologique de l'examen de l'allure asymptotique des intégrales des équations différentielles ordinaires, Ann. Soc. Polon. Math., 20 (1947), 279-313.   Google Scholar

Figure 1.  In the red region $ f(t,x,y)>\alpha'(t) $, in the green one $ f(t,x,y)<\alpha'(t) $
Figure 2.  A section of the set $ V $ at time $ t $ with its egress points
Figure 3.  The grid made of quadrilaterals near the point $ (\alpha(t),y_\alpha(t)) $
[1]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[2]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[3]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[4]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[5]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[6]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[7]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[8]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[9]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[10]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[11]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[12]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[13]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[14]

Palash Sarkar, Subhadip Singha. Verifying solutions to LWE with implications for concrete security. Advances in Mathematics of Communications, 2021, 15 (2) : 257-266. doi: 10.3934/amc.2020057

[15]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[16]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[17]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[18]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[19]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[20]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (19)
  • HTML views (83)
  • Cited by (0)

Other articles
by authors

[Back to Top]