
-
Previous Article
On the dynamics of 3D electrified falling films
- DCDS Home
- This Issue
-
Next Article
An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth
A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo"
1. | Dipartimento di Matematica e Geoscienze, Università di Trieste, P.le Europa 1, Trieste, Italy |
2. | Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università di Udine, Via delle Scienze 206, Udine, Italy |
We prove the existence of bounded and periodic solutions for planar systems by introducing a notion of lower and upper solutions which generalizes the classical one for scalar second order equations. The proof relies on phase plane analysis; after suitably modifying the nonlinearities, the Ważewski theory provides a solution which remains bounded in the future. For the periodic problem, the Massera Theorem applies, yielding the existence result. We then show how our result generalizes some well known theorems on the existence of bounded and of periodic solutions. Finally, we provide some corollaries on the existence of almost periodic solutions for scalar second order equations.
References:
[1] |
S. Ahmad,
A nonstandard resonance problem for ordinary differential equations, Trans. Amer. Math. Soc., 323 (1991), 857-875.
doi: 10.1090/S0002-9947-1991-1010407-9. |
[2] |
I. Barbălat,
Applications du principe topologique de T. Ważewski aux équations différentielles du second ordre, Ann. Polon. Math., 5 (1958), 303-317.
|
[3] |
J. W. Bebernes and R. Wilhelmsen,
A general boundary value problem technique, J. Differential Equations, 8 (1970), 404-415.
doi: 10.1016/0022-0396(70)90014-8. |
[4] |
C. Bereanu and J. Mawhin,
Existence and multiplicity results for some nonlinear problems with singular $\phi$-Laplacian, J. Differential Equations, 243 (2007), 536-557.
doi: 10.1016/j.jde.2007.05.014. |
[5] |
A. Cabada, An overview of the lower and upper solutions method with nonlinear boundary value conditions, Bound. Value Probl., 2011 (2011), Art. ID 893753, 18 pp.
doi: 10.1155/2011/893753. |
[6] |
C. Corduneanu, Soluţii aproape periodice ale ecuaţiilor diferenţiale neliniare de ordinul al doilea, Com. Acad. R. P. Romîne, 5 (1955), 793–797. Google Scholar |
[7] |
C. De Coster and P. Habets, Two-Point Boundary Value Problems, Lower and Upper Solutions, Elsevier, Amsterdam, 2006. |
[8] |
A. M. Fink,
Uniqueness theorems and almost periodic solutions to second order differential equations, J. Differential Equations, 4 (1968), 543-548.
doi: 10.1016/0022-0396(68)90004-1. |
[9] |
A. Fonda, G. Klun and A. Sfecci, Non-well-ordered lower and upper solutions for semilinear systems of PDEs, preprint, 2020. Google Scholar |
[10] |
A. Fonda and R. Toader,
Lower and upper solutions to semilinear boundary value problems: An abstract approach, Topol. Methods Nonlinear Anal., 38 (2011), 59-93.
|
[11] |
A. Fonda and F. Zanolin,
Bounded solutions of nonlinear second order ordinary differential equations, Discrete Contin. Dynam. Systems, 4 (1998), 91-98.
doi: 10.3934/dcds.1998.4.91. |
[12] |
P. Habets and R. L. Pouso,
Examples of the nonexistence of a solution in the presence of upper and lower solutions, ANZIAM J., 44 (2003), 591-594.
doi: 10.1017/S1446181100012955. |
[13] |
P. Hartman, Ordinary Differential Equations, Wiley and Sons, New York, 1964. |
[14] |
L. K. Jackson and G. Klaasen,
A variation of the topological method of Ważewski, SIAM J. Appl. Math., 20 (1971), 124-130.
doi: 10.1137/0120016. |
[15] |
J. L. Kaplan, A. Lasota and J. A. Yorke,
An application of the Ważewski retract method to boundary value problems, Zeszyty Nauk. Uniw. Jagielloń. Prace Mat., 16 (1974), 7-14.
|
[16] |
H.-W. Knobloch,
Zwei Kriterien für die Existenz periodischer Lösungen von Differentialgleichungen zweiter Ordnung, Arch. Math., 14 (1963), 182-185.
doi: 10.1007/BF01234941. |
[17] |
H.-W. Knobloch,
Eine neue Methode zur Approximation periodischer Lösungen nicht-linearer Differentialgleichungen zweiter Ordnung, Math. Z., 82 (1963), 177-197.
doi: 10.1007/BF01111422. |
[18] |
J. L. Massera,
The existence of periodic solutions of systems of differential equations, Duke Math. J., 17 (1950), 457-475.
|
[19] |
J. Mawhin and J. R. Ward, Bounded solutions of some second order nonlinear differential equations, J. London Math. Soc., (2) 58 (1998), 733–747.
doi: 10.1112/S0024610798006784. |
[20] |
M. Nagumo, Über die Differentialgleichung $y" = f(t, y, y')$, Proc. Phys-Math. Soc. Japan, 19 (1937), 861-866. Google Scholar |
[21] |
F. Obersnel, P. Omari and S. Rivetti,
Existence, regularity and stability properties of periodic solutions of a capillarity equation in the presence of lower and upper solutions, Nonlinear Anal. Real World Appl., 13 (2012), 2830-2852.
doi: 10.1016/j.nonrwa.2012.04.012. |
[22] |
R. Ortega,
A boundedness result of Landesman-Lazer type, Differential Integral Equations, 8 (1995), 729-734.
|
[23] |
R. Ortega, Periodic Differential Equations in the Plane. A Topological Perspective, De Gruyter, Berlin, 2019.
doi: 10.1515/9783110551167. |
[24] |
R. Ortega and M. Tarallo,
Almost periodic upper and lower solutions, J. Differential Equations, 193 (2003), 343-358.
doi: 10.1016/S0022-0396(03)00130-X. |
[25] |
R. Ortega and A. Tineo,
Resonance and non-resonance in a problem of boundedness, Proc. Amer. Math. Soc., 124 (1996), 2089-2096.
doi: 10.1090/S0002-9939-96-03457-0. |
[26] |
E. Picard, Sur l'application des méthodes d'approximations successives à l'étude de certaines équations différentielles ordinaires, J. Math. Pures Appl., 9 (1893), 217-271. Google Scholar |
[27] |
F. Sadyrbaev,
Ważewski method and upper and lower functions for higher order ordinary differential equations, Univ. Iagel. Acta Math., 36 (1998), 165-170.
|
[28] |
K. Schmitt,
Bounded solutions of nonlinear second order differential equations, Duke Math. J., 36 (1969), 237-243.
|
[29] |
K. Schmitt and J. R. Ward,
Almost periodic solutions of nonlinear second order differential equations, Results Math., 21 (1992), 190-199.
doi: 10.1007/BF03323078. |
[30] |
G. Scorza Dragoni,
Il problema dei valori ai limiti studiato in grande per le equazioni differenziali del secondo ordine, Math. Ann., 105 (1931), 133-143.
doi: 10.1007/BF01455811. |
[31] |
R. Srzednicki, Ważewski method and Conley index, Handbook of Differential Equations (eds. A. Cañada, P. Drábek, A. Fonda) Elsevier/North-Holland, Amsterdam, 2004,591–684. |
[32] |
N. Soave and G. Verzini,
Bounded solutions for a forced bounded oscillator without friction, J. Differential Equations, 256 (2014), 2526-2558.
doi: 10.1016/j.jde.2014.01.015. |
[33] |
M. Tarallo and Z. Zhou,
Limit periodic upper and lower solutions in a generic sense, Discrete Contin. Dyn. Syst., 38 (2018), 293-309.
doi: 10.3934/dcds.2018014. |
[34] |
J. Y. Wang, W. J. Gao and Z. H. Lin, Boundary value problems for general second order equations and similarity solutions to the Rayleigh problem, Tohoku Math. J., (2) 47 (1995), 327–344.
doi: 10.2748/tmj/1178225520. |
[35] |
T. Ważewski,
Sur un principe topologique de l'examen de l'allure asymptotique des intégrales des équations différentielles ordinaires, Ann. Soc. Polon. Math., 20 (1947), 279-313.
|
show all references
References:
[1] |
S. Ahmad,
A nonstandard resonance problem for ordinary differential equations, Trans. Amer. Math. Soc., 323 (1991), 857-875.
doi: 10.1090/S0002-9947-1991-1010407-9. |
[2] |
I. Barbălat,
Applications du principe topologique de T. Ważewski aux équations différentielles du second ordre, Ann. Polon. Math., 5 (1958), 303-317.
|
[3] |
J. W. Bebernes and R. Wilhelmsen,
A general boundary value problem technique, J. Differential Equations, 8 (1970), 404-415.
doi: 10.1016/0022-0396(70)90014-8. |
[4] |
C. Bereanu and J. Mawhin,
Existence and multiplicity results for some nonlinear problems with singular $\phi$-Laplacian, J. Differential Equations, 243 (2007), 536-557.
doi: 10.1016/j.jde.2007.05.014. |
[5] |
A. Cabada, An overview of the lower and upper solutions method with nonlinear boundary value conditions, Bound. Value Probl., 2011 (2011), Art. ID 893753, 18 pp.
doi: 10.1155/2011/893753. |
[6] |
C. Corduneanu, Soluţii aproape periodice ale ecuaţiilor diferenţiale neliniare de ordinul al doilea, Com. Acad. R. P. Romîne, 5 (1955), 793–797. Google Scholar |
[7] |
C. De Coster and P. Habets, Two-Point Boundary Value Problems, Lower and Upper Solutions, Elsevier, Amsterdam, 2006. |
[8] |
A. M. Fink,
Uniqueness theorems and almost periodic solutions to second order differential equations, J. Differential Equations, 4 (1968), 543-548.
doi: 10.1016/0022-0396(68)90004-1. |
[9] |
A. Fonda, G. Klun and A. Sfecci, Non-well-ordered lower and upper solutions for semilinear systems of PDEs, preprint, 2020. Google Scholar |
[10] |
A. Fonda and R. Toader,
Lower and upper solutions to semilinear boundary value problems: An abstract approach, Topol. Methods Nonlinear Anal., 38 (2011), 59-93.
|
[11] |
A. Fonda and F. Zanolin,
Bounded solutions of nonlinear second order ordinary differential equations, Discrete Contin. Dynam. Systems, 4 (1998), 91-98.
doi: 10.3934/dcds.1998.4.91. |
[12] |
P. Habets and R. L. Pouso,
Examples of the nonexistence of a solution in the presence of upper and lower solutions, ANZIAM J., 44 (2003), 591-594.
doi: 10.1017/S1446181100012955. |
[13] |
P. Hartman, Ordinary Differential Equations, Wiley and Sons, New York, 1964. |
[14] |
L. K. Jackson and G. Klaasen,
A variation of the topological method of Ważewski, SIAM J. Appl. Math., 20 (1971), 124-130.
doi: 10.1137/0120016. |
[15] |
J. L. Kaplan, A. Lasota and J. A. Yorke,
An application of the Ważewski retract method to boundary value problems, Zeszyty Nauk. Uniw. Jagielloń. Prace Mat., 16 (1974), 7-14.
|
[16] |
H.-W. Knobloch,
Zwei Kriterien für die Existenz periodischer Lösungen von Differentialgleichungen zweiter Ordnung, Arch. Math., 14 (1963), 182-185.
doi: 10.1007/BF01234941. |
[17] |
H.-W. Knobloch,
Eine neue Methode zur Approximation periodischer Lösungen nicht-linearer Differentialgleichungen zweiter Ordnung, Math. Z., 82 (1963), 177-197.
doi: 10.1007/BF01111422. |
[18] |
J. L. Massera,
The existence of periodic solutions of systems of differential equations, Duke Math. J., 17 (1950), 457-475.
|
[19] |
J. Mawhin and J. R. Ward, Bounded solutions of some second order nonlinear differential equations, J. London Math. Soc., (2) 58 (1998), 733–747.
doi: 10.1112/S0024610798006784. |
[20] |
M. Nagumo, Über die Differentialgleichung $y" = f(t, y, y')$, Proc. Phys-Math. Soc. Japan, 19 (1937), 861-866. Google Scholar |
[21] |
F. Obersnel, P. Omari and S. Rivetti,
Existence, regularity and stability properties of periodic solutions of a capillarity equation in the presence of lower and upper solutions, Nonlinear Anal. Real World Appl., 13 (2012), 2830-2852.
doi: 10.1016/j.nonrwa.2012.04.012. |
[22] |
R. Ortega,
A boundedness result of Landesman-Lazer type, Differential Integral Equations, 8 (1995), 729-734.
|
[23] |
R. Ortega, Periodic Differential Equations in the Plane. A Topological Perspective, De Gruyter, Berlin, 2019.
doi: 10.1515/9783110551167. |
[24] |
R. Ortega and M. Tarallo,
Almost periodic upper and lower solutions, J. Differential Equations, 193 (2003), 343-358.
doi: 10.1016/S0022-0396(03)00130-X. |
[25] |
R. Ortega and A. Tineo,
Resonance and non-resonance in a problem of boundedness, Proc. Amer. Math. Soc., 124 (1996), 2089-2096.
doi: 10.1090/S0002-9939-96-03457-0. |
[26] |
E. Picard, Sur l'application des méthodes d'approximations successives à l'étude de certaines équations différentielles ordinaires, J. Math. Pures Appl., 9 (1893), 217-271. Google Scholar |
[27] |
F. Sadyrbaev,
Ważewski method and upper and lower functions for higher order ordinary differential equations, Univ. Iagel. Acta Math., 36 (1998), 165-170.
|
[28] |
K. Schmitt,
Bounded solutions of nonlinear second order differential equations, Duke Math. J., 36 (1969), 237-243.
|
[29] |
K. Schmitt and J. R. Ward,
Almost periodic solutions of nonlinear second order differential equations, Results Math., 21 (1992), 190-199.
doi: 10.1007/BF03323078. |
[30] |
G. Scorza Dragoni,
Il problema dei valori ai limiti studiato in grande per le equazioni differenziali del secondo ordine, Math. Ann., 105 (1931), 133-143.
doi: 10.1007/BF01455811. |
[31] |
R. Srzednicki, Ważewski method and Conley index, Handbook of Differential Equations (eds. A. Cañada, P. Drábek, A. Fonda) Elsevier/North-Holland, Amsterdam, 2004,591–684. |
[32] |
N. Soave and G. Verzini,
Bounded solutions for a forced bounded oscillator without friction, J. Differential Equations, 256 (2014), 2526-2558.
doi: 10.1016/j.jde.2014.01.015. |
[33] |
M. Tarallo and Z. Zhou,
Limit periodic upper and lower solutions in a generic sense, Discrete Contin. Dyn. Syst., 38 (2018), 293-309.
doi: 10.3934/dcds.2018014. |
[34] |
J. Y. Wang, W. J. Gao and Z. H. Lin, Boundary value problems for general second order equations and similarity solutions to the Rayleigh problem, Tohoku Math. J., (2) 47 (1995), 327–344.
doi: 10.2748/tmj/1178225520. |
[35] |
T. Ważewski,
Sur un principe topologique de l'examen de l'allure asymptotique des intégrales des équations différentielles ordinaires, Ann. Soc. Polon. Math., 20 (1947), 279-313.
|
[1] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[2] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[3] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[4] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[5] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[6] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
[7] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[8] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[9] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[10] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[11] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[12] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[13] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[14] |
Palash Sarkar, Subhadip Singha. Verifying solutions to LWE with implications for concrete security. Advances in Mathematics of Communications, 2021, 15 (2) : 257-266. doi: 10.3934/amc.2020057 |
[15] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020210 |
[16] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[17] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[18] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[19] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[20] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]