
-
Previous Article
On fair entropy of the tent family
- DCDS Home
- This Issue
-
Next Article
Stability of Broucke's isosceles orbit
Chaotic Delone sets
1. | Departamento e Instituto de Matemáticas, Facultade de Matemáticas, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain |
2. | Research Organization of Science and Technology, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan |
3. | Department of Mathematical Sciences, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, UK |
4. | Department of Mathematical Sciences, Colleges of Science and Engineering, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan |
5. | Department of Mathematical Sciences, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, UK |
We present a definition of chaotic Delone set and establish the genericity of chaos in the space of $ (\epsilon,\delta) $-Delone sets for $ \epsilon\geq \delta $. We also present a hyperbolic analogue of the cut-and-project method that naturally produces examples of chaotic Delone sets.
References:
[1] |
J. A. Álvarez López and A. Candel,
Algebraic characterization of quasi-isometric spaces via the Higson compactification, Topology Appl., 158 (2011), 1679-1694.
doi: 10.1016/j.topol.2011.05.036. |
[2] |
D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov., 90 (1967), 209 pp. |
[3] |
D. V. Anosov, Geodesic Flows on Closed {R}iemann Manifolds with Negative Curvature, Proceedings of the Steklov Institute of Mathematics, No. 90 (1967). Translated from the Russian by S. Feder, American Mathematical Society, Providence, R.I., 1969. |
[4] |
M. Baake and D. Lenz,
Dynamical systems on translation bounded measures: pure point dynamical and diffraction spectra, Ergodic Theory Dynam. Systems, 24 (2004), 1867-1893.
doi: 10.1017/S0143385704000318. |
[5] |
M. Baake and U. Grimm, Aperiodic Order, Vol. 1., A Mathematical Invitation. With a foreword by Roger Penrose. Vol. 149 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2013.
doi: 10.1017/CBO9781139025256.![]() ![]() ![]() |
[6] |
J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey,
On Devaney's definition of chaos, Amer. Math. Monthly, 99 (1992), 332-334.
doi: 10.1080/00029890.1992.11995856. |
[7] |
R. Barral Lijó and H. Nozawa, Genericity of chaos for colored graphs, preprint (2019), arXiv: 1909.01676. |
[8] |
J. Belissard, D. Hermann and M. Zarrouati, Hulls of aperiodic solids and gap labeling theorems, in Directions in Mathematical Quasicrystals (eds. R. Baake and R. V. Moody), vol. 13, Amer. Math. Soc., Providence, RI, 2000.
doi: 10.1090/crmm/013. |
[9] |
G. Cairns, G. Davis, D. Elton, A. Kolganova and P. Perversi,
Chaotic group actions, Enseign. Math. (2), 41 (1995), 123-133.
|
[10] |
D. G. Champernowne,
The construction of decimals normal in the scale of ten, J. London Math. Soc., 8 (1933), 254-260.
|
[11] |
F. Dal'bo,
Remarques sur le spectre des longueurs d'une surface et comptages, Bol. Soc. Brasil. Mat. (N.S.), 30 (1999), 199-221.
doi: 10.1007/BF01235869. |
[12] |
R. L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd edition, Addison-Wesley, 1989. |
[13] |
A. Forrest, J. Hunton and J. Kellendonk, Topological Invariants for Projection Method Patterns, Mem. Amer. Math. Soc., 159 2002, x+120.
doi: 10.1090/memo/0758. |
[14] |
J. Hadamard,
Les surfaces à courbures opposées et leurs lignes géodesiques, J. Math. Pures Appl., 4 (1898), 27-73.
|
[15] |
G. A. Hedlund,
On the metrical transitivity of the geodesics on closed surfaces of constant negative curvature, Ann. of Math. (2), 35 (1934), 787-808.
doi: 10.2307/1968495. |
[16] |
G. A. Hedlund,
The dynamics of geodesic flows, Bull. Amer. Math. Soc., 45 (1939), 241-260.
doi: 10.1090/S0002-9904-1939-06945-0. |
[17] |
S. Katok and I. Ugarcovici,
Symbolic dynamics for the modular surface and beyond, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 87-132.
doi: 10.1090/S0273-0979-06-01115-3. |
[18] |
B. P. Kitchens, Symbolic Dynamics. One-sided, Two-sided and Countable State Markov Shifts, Universitext. Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-642-58822-8. |
[19] |
J. C. Lagarias and P. A. B. Pleasants,
Repetitive Delone sets and quasicrystals, Ergodic Theory Dynam. Systems, 23 (2003), 831-867.
doi: 10.1017/S0143385702001566. |
[20] |
D. Lenz and P. Stollmann, Delone dynamical systems and associated random operators, in Operator Algebras and Mathematical Physics: Conference Proceedings : Constanţa (Romania), July 2-7, 2001 (eds. J. Combes, J. Cuntz, G. Elliott, G. Nenciu, H. Siedentop and S. Stratila), 2003. |
[21] |
Robert V. Moody (ed.), The Mathematics of Long-Range Aperiodic Order, vol. 489 of NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, Kluwer Academic Publishers Group, Dordrecht, 1997.
doi: 10.1007/978-94-015-8784-6. |
[22] |
H. M. Morse,
A one-to-one representation of geodesics on a surface of negative curvature, Amer. J. Math., 43 (1921), 33-51.
doi: 10.2307/2370306. |
[23] |
H. M. Morse,
Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math. Soc., 22 (1921), 84-100.
doi: 10.1090/S0002-9947-1921-1501161-8. |
[24] |
P. Müller and C. Richard,
Ergodic properties of randomly coloured point sets, Canad. J. Math., 65 (2013), 349-402.
doi: 10.4153/CJM-2012-009-7. |
[25] |
F. M. Schneider, S. Kerkhoff, M. Behrisch and S. Siegmund,
Chaotic actions of topological semigroups, Semigroup Forum, 87 (2013), 590-598.
doi: 10.1007/s00233-013-9517-4. |
show all references
References:
[1] |
J. A. Álvarez López and A. Candel,
Algebraic characterization of quasi-isometric spaces via the Higson compactification, Topology Appl., 158 (2011), 1679-1694.
doi: 10.1016/j.topol.2011.05.036. |
[2] |
D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov., 90 (1967), 209 pp. |
[3] |
D. V. Anosov, Geodesic Flows on Closed {R}iemann Manifolds with Negative Curvature, Proceedings of the Steklov Institute of Mathematics, No. 90 (1967). Translated from the Russian by S. Feder, American Mathematical Society, Providence, R.I., 1969. |
[4] |
M. Baake and D. Lenz,
Dynamical systems on translation bounded measures: pure point dynamical and diffraction spectra, Ergodic Theory Dynam. Systems, 24 (2004), 1867-1893.
doi: 10.1017/S0143385704000318. |
[5] |
M. Baake and U. Grimm, Aperiodic Order, Vol. 1., A Mathematical Invitation. With a foreword by Roger Penrose. Vol. 149 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2013.
doi: 10.1017/CBO9781139025256.![]() ![]() ![]() |
[6] |
J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey,
On Devaney's definition of chaos, Amer. Math. Monthly, 99 (1992), 332-334.
doi: 10.1080/00029890.1992.11995856. |
[7] |
R. Barral Lijó and H. Nozawa, Genericity of chaos for colored graphs, preprint (2019), arXiv: 1909.01676. |
[8] |
J. Belissard, D. Hermann and M. Zarrouati, Hulls of aperiodic solids and gap labeling theorems, in Directions in Mathematical Quasicrystals (eds. R. Baake and R. V. Moody), vol. 13, Amer. Math. Soc., Providence, RI, 2000.
doi: 10.1090/crmm/013. |
[9] |
G. Cairns, G. Davis, D. Elton, A. Kolganova and P. Perversi,
Chaotic group actions, Enseign. Math. (2), 41 (1995), 123-133.
|
[10] |
D. G. Champernowne,
The construction of decimals normal in the scale of ten, J. London Math. Soc., 8 (1933), 254-260.
|
[11] |
F. Dal'bo,
Remarques sur le spectre des longueurs d'une surface et comptages, Bol. Soc. Brasil. Mat. (N.S.), 30 (1999), 199-221.
doi: 10.1007/BF01235869. |
[12] |
R. L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd edition, Addison-Wesley, 1989. |
[13] |
A. Forrest, J. Hunton and J. Kellendonk, Topological Invariants for Projection Method Patterns, Mem. Amer. Math. Soc., 159 2002, x+120.
doi: 10.1090/memo/0758. |
[14] |
J. Hadamard,
Les surfaces à courbures opposées et leurs lignes géodesiques, J. Math. Pures Appl., 4 (1898), 27-73.
|
[15] |
G. A. Hedlund,
On the metrical transitivity of the geodesics on closed surfaces of constant negative curvature, Ann. of Math. (2), 35 (1934), 787-808.
doi: 10.2307/1968495. |
[16] |
G. A. Hedlund,
The dynamics of geodesic flows, Bull. Amer. Math. Soc., 45 (1939), 241-260.
doi: 10.1090/S0002-9904-1939-06945-0. |
[17] |
S. Katok and I. Ugarcovici,
Symbolic dynamics for the modular surface and beyond, Bull. Amer. Math. Soc. (N.S.), 44 (2007), 87-132.
doi: 10.1090/S0273-0979-06-01115-3. |
[18] |
B. P. Kitchens, Symbolic Dynamics. One-sided, Two-sided and Countable State Markov Shifts, Universitext. Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-642-58822-8. |
[19] |
J. C. Lagarias and P. A. B. Pleasants,
Repetitive Delone sets and quasicrystals, Ergodic Theory Dynam. Systems, 23 (2003), 831-867.
doi: 10.1017/S0143385702001566. |
[20] |
D. Lenz and P. Stollmann, Delone dynamical systems and associated random operators, in Operator Algebras and Mathematical Physics: Conference Proceedings : Constanţa (Romania), July 2-7, 2001 (eds. J. Combes, J. Cuntz, G. Elliott, G. Nenciu, H. Siedentop and S. Stratila), 2003. |
[21] |
Robert V. Moody (ed.), The Mathematics of Long-Range Aperiodic Order, vol. 489 of NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, Kluwer Academic Publishers Group, Dordrecht, 1997.
doi: 10.1007/978-94-015-8784-6. |
[22] |
H. M. Morse,
A one-to-one representation of geodesics on a surface of negative curvature, Amer. J. Math., 43 (1921), 33-51.
doi: 10.2307/2370306. |
[23] |
H. M. Morse,
Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math. Soc., 22 (1921), 84-100.
doi: 10.1090/S0002-9947-1921-1501161-8. |
[24] |
P. Müller and C. Richard,
Ergodic properties of randomly coloured point sets, Canad. J. Math., 65 (2013), 349-402.
doi: 10.4153/CJM-2012-009-7. |
[25] |
F. M. Schneider, S. Kerkhoff, M. Behrisch and S. Siegmund,
Chaotic actions of topological semigroups, Semigroup Forum, 87 (2013), 590-598.
doi: 10.1007/s00233-013-9517-4. |






[1] |
Anke D. Pohl. Symbolic dynamics for the geodesic flow on two-dimensional hyperbolic good orbifolds. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2173-2241. doi: 10.3934/dcds.2014.34.2173 |
[2] |
Rafael O. Ruggiero. Shadowing of geodesics, weak stability of the geodesic flow and global hyperbolic geometry. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 365-383. doi: 10.3934/dcds.2006.14.365 |
[3] |
Dubi Kelmer, Hee Oh. Shrinking targets for the geodesic flow on geometrically finite hyperbolic manifolds. Journal of Modern Dynamics, 2021, 17: 401-434. doi: 10.3934/jmd.2021014 |
[4] |
Manuel del Pino, Michal Kowalczyk, Juncheng Wei. The Jacobi-Toda system and foliated interfaces. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 975-1006. doi: 10.3934/dcds.2010.28.975 |
[5] |
Dirk Frettlöh, Christoph Richard. Dynamical properties of almost repetitive Delone sets. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 531-556. doi: 10.3934/dcds.2014.34.531 |
[6] |
Tong Li, Kun Zhao. On a quasilinear hyperbolic system in blood flow modeling. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 333-344. doi: 10.3934/dcdsb.2011.16.333 |
[7] |
J. Alberto Conejero, Francisco Rodenas, Macarena Trujillo. Chaos for the Hyperbolic Bioheat Equation. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 653-668. doi: 10.3934/dcds.2015.35.653 |
[8] |
Jiaxi Huang, Youde Wang, Lifeng Zhao. Equivariant Schrödinger map flow on two dimensional hyperbolic space. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4379-4425. doi: 10.3934/dcds.2020184 |
[9] |
Vadim S. Anishchenko, Tatjana E. Vadivasova, Galina I. Strelkova, George A. Okrokvertskhov. Statistical properties of dynamical chaos. Mathematical Biosciences & Engineering, 2004, 1 (1) : 161-184. doi: 10.3934/mbe.2004.1.161 |
[10] |
Samir Salem. A gradient flow approach of propagation of chaos. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5729-5754. doi: 10.3934/dcds.2020243 |
[11] |
Younghwan Son. Substitutions, tiling dynamical systems and minimal self-joinings. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4855-4874. doi: 10.3934/dcds.2014.34.4855 |
[12] |
Stefano Bianchini. On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 329-350. doi: 10.3934/dcds.2000.6.329 |
[13] |
Zhenqi Jenny Wang. The twisted cohomological equation over the geodesic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3923-3940. doi: 10.3934/dcds.2019158 |
[14] |
Dieter Mayer, Fredrik Strömberg. Symbolic dynamics for the geodesic flow on Hecke surfaces. Journal of Modern Dynamics, 2008, 2 (4) : 581-627. doi: 10.3934/jmd.2008.2.581 |
[15] |
Lorenzo Arona, Josep J. Masdemont. Computation of heteroclinic orbits between normally hyperbolic invariant 3-spheres foliated by 2-dimensional invariant Tori in Hill's problem. Conference Publications, 2007, 2007 (Special) : 64-74. doi: 10.3934/proc.2007.2007.64 |
[16] |
Jeanette Olli. Endomorphisms of Sturmian systems and the discrete chair substitution tiling system. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4173-4186. doi: 10.3934/dcds.2013.33.4173 |
[17] |
Stefanie Hittmeyer, Bernd Krauskopf, Hinke M. Osinga, Katsutoshi Shinohara. How to identify a hyperbolic set as a blender. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6815-6836. doi: 10.3934/dcds.2020295 |
[18] |
Xianwei Chen, Zhujun Jing, Xiangling Fu. Chaos control in a pendulum system with excitations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 373-383. doi: 10.3934/dcdsb.2015.20.373 |
[19] |
Katrin Gelfert. Non-hyperbolic behavior of geodesic flows of rank 1 surfaces. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 521-551. doi: 10.3934/dcds.2019022 |
[20] |
Vladimir S. Matveev and Petar J. Topalov. Metric with ergodic geodesic flow is completely determined by unparameterized geodesics. Electronic Research Announcements, 2000, 6: 98-104. |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]