• Previous Article
    Local well-posedness for the derivative nonlinear Schrödinger equation with $ L^2 $-subcritical data
  • DCDS Home
  • This Issue
  • Next Article
    Coexistence and exclusion of competitive Kolmogorov systems with semi-Markovian switching
September  2021, 41(9): 4185-4206. doi: 10.3934/dcds.2021033

Partial regularity and Liouville theorems for stable solutions of anisotropic elliptic equations

1. 

Department of Mathematics, The University of Texas at San Antonio, San Antonio, TX 78249, USA

2. 

College of Mathematics and Econometrics, Hunan University, Changsha 410082, China, Department of Mathematics, The University of Texas at San Antonio, San Antonio, TX 78249, USA

* Corresponding author: Mostafa Fazly

Received  June 2020 Revised  January 2021 Published  September 2021 Early access  February 2021

Fund Project: This work is part of the second author's Ph.D. dissertation and supported by a China Scholarship Council funding

We study the quasilinear elliptic equation
$ \begin{equation*} -Qu = e^u ~~~~\mbox{in}~~~~ \Omega\subset \mathbb{R}^{N}, \end{equation*} $
where the operator
$ Q $
, known as the Finsler-Laplacian (or anisotropic Laplacian) operator, is defined by
$ Qu: = \sum\limits_{i = 1}^{N}\frac{\partial}{\partial x_{i}}(F(\nabla u)F_{\xi_{i}}(\nabla u)). $
Here
$ F_{\xi_{i}} = \frac{\partial F}{\partial\xi_{i}} $
and
$ F: \mathbb{R}^{N}\rightarrow[0, +\infty) $
is a convex function of
$ C^{2}(\mathbb{R}^{N}\setminus\{0\}) $
that satisfies certain assumptions. For a bounded domain
$ \Omega $
and for a stable weak solution of the above equation, we prove that the Hausdorff dimension of singular set does not exceed
$ N-10 $
. For the case of entire space, we apply Moser iteration arguments, established by Dancer-Farina and Crandall-Rabinowitz in the context, to prove Liouville theorems for stable solutions and for finite Morse index solutions in dimensions
$ N<10 $
and
$ 2<N<10 $
, respectively. We also provide an explicit solution that is stable outside a compact set in two dimensions
$ N = 2 $
. In addition, we present similar Liouville theorems for the related equations with power-type nonlinearities.
Citation: Mostafa Fazly, Yuan Li. Partial regularity and Liouville theorems for stable solutions of anisotropic elliptic equations. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4185-4206. doi: 10.3934/dcds.2021033
References:
[1]

A. AlvinoV. FeroneG. Trombetti and P. L. Lions, Convex symmetrization and applications, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 14 (1997), 275-293.  doi: 10.1016/S0294-1449(97)80147-3.

[2]

M. Amar and G. Bellettini, A notion of total variation depending on a metric with discontinuous coefficients, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 11 (1994), 91-133.  doi: 10.1016/S0294-1449(16)30197-4.

[3]

W. W. Ao and W. Yang, On the classification of solutions of cosmic strings equation, Ann. Mat. Pura Appl., 198 (2019), 2183-2193.  doi: 10.1007/s10231-019-00861-w.

[4]

H. Brezis and F. Merle, Uniform estimates and blow-up behavior for solutions of $-\Delta u = V(x)e^{u}$ in two dimensions, Comm. Partial Differential Equations, 16 (1991), 1223-1253.  doi: 10.1080/03605309108820797.

[5]

L. CaffarelliN. Garofalo and F. Segala, A gradient bound for entire solutions of quasi-linear equations and its consequences, omm. Pure Appl. Math., 47 (1994), 1457-1473.  doi: 10.1002/cpa.3160471103.

[6]

A. Cianchi and P. Salani, Overdetermined anisotropic elliptic problems, Math. Ann., 345 (2009), 859-881.  doi: 10.1007/s00208-009-0386-9.

[7]

G. Ciraolo, A. Figalli and A. Roncoroni, Symmetry results for critical anisotropic p-Laplacian equations in convex cones, Geom. Funct. Anal., 30 (2020), 770–803, arXiv: 1906.00622v1. doi: 10.1007/s00039-020-00535-3.

[8]

M. CozziA. Farina and E. Valdinoci, Monotonicity formulae and classification results for singular, degenerate, anisotropic PDEs, Adv. Math., 293 (2016), 343-381.  doi: 10.1016/j.aim.2016.02.014.

[9]

M. CozziA. Farina and E. Valdinoci, Gradient bounds and rigidity results for singular, degenerate, anisotropic partial differential equations, Comm. Math. Phys., 331 (2014), 189-214.  doi: 10.1007/s00220-014-2107-9.

[10]

M. G. Crandall and P. H. Rabinowitz, Some continuation and variation methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rat. Mech. Anal., 58 (1975), 207-218.  doi: 10.1007/BF00280741.

[11]

F. Dalio, Partial regularity for stationary solutions to Liouville-type equation in dimension $3$, Comm. Partial Differential Equations, 33 (2008), 1890-1910.  doi: 10.1080/03605300802402625.

[12]

E. N. Dancer and A. Farina, On the classification of solutions of $-\Delta u = e^{u}$ on $\mathbb{R}^{N}$: stability outside a compact set and applications, Proc. Amer. Math. Soc, 137 (2009), 1333-1338.  doi: 10.1090/S0002-9939-08-09772-4.

[13]

E. N. Dancer, Finite Morse index solutions of exponential problems, Ann. Inst. H. Poincare Anal. Non Lineaire, 25 (2008), 173-179.  doi: 10.1016/j.anihpc.2006.12.001.

[14]

J. DavilaL. DupaigneK. L. Wang and J. C. Wei, A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem, Adv. Math., 258 (2014), 240-285.  doi: 10.1016/j.aim.2014.02.034.

[15]

P. Esposito, N. Ghoussoub and Y. Guo, Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS, Courant Lecture Notes in Mathematics, 20. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2010. doi: 10.1090/cln/020.

[16]

P. EspositoN. Ghoussoub and Y. Guo, Compactness along the branch of semistable and unstable solutions for an elliptic problem with a singular nonlinearity, Comm. Pure Appl. Math, 60 (2007), 1731-1768.  doi: 10.1002/cpa.20189.

[17]

A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $\mathbb{R}^{N}$, J. Math. Pures Appl, 87 (2007), 537-561.  doi: 10.1016/j.matpur.2007.03.001.

[18]

A. Farina, Stable solutions of $-\Delta u = e^{u}$ on $\mathbb{R}^{N}$, C. R. Math. Acad. Sci. Paris, 345 (2007), 63-66.  doi: 10.1016/j.crma.2007.05.021.

[19]

A. Farina and E. Valdinoci, Gradient bounds for anisotropic partial differential equations, Calc. Var. Partial Differential Equations, 49 (2014), 923-936.  doi: 10.1007/s00526-013-0605-9.

[20]

M. Fazly, Entire solutions of quasilinear symmetric systems, Indiana Univ. Math. J., 66 (2017), 361-400.  doi: 10.1512/iumj.2017.66.6017.

[21]

M. Fazly and H. Shahgholian, Monotonicity formulas for coupled elliptic gradient systems with applications, Adv. Nonlinear Anal, 9 (2020), 479-495.  doi: 10.1515/anona-2020-0010.

[22]

V. Ferone and B. Kawohl, Remarks on a Finsler-Laplacian, Proc. Amer. Math. Soc, 137 (2009), 247-253.  doi: 10.1090/S0002-9939-08-09554-3.

[23]

I. Fonseca and S. Müller, A uniqueness proof for the Wulff theorem, Proc. Roy. Soc. Edinburgh Sect. A, 119 (1991), 125-136.  doi: 10.1017/S0308210500028365.

[24]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1998.

[25]

Z. M. Guo and J. C. Wei, Hausdorff dimension of ruptures for solutions of a semilinear elliptic equation with singular nonlinearity, Manuscripta Math, 120 (2006), 193-209.  doi: 10.1007/s00229-006-0001-2.

[26]

F. H. Lin and X. P. Yang, Geometric Measure Theory: An Introduction. Advanced Mathematics (Beijing/Boston), vol. 1. Science Press/International Press, Boston/Beijing, 2002.

[27]

A. Mercaldo, M. Sano and F. Takahashi, Finsler Hardy inequalities, Math. Nachr., 293 (2020), 2370–2398, arXiv: 1806.04901v2. doi: 10.1002/mana.201900117.

[28]

L. Modica, Monotonicity of the energy for entire solutions of semilinear elliptic equations, in: Partial Differential Equations and the Calculus of Variations, vol. II, in: Progr. Nonlinear Differential Equations Appl., vol. 2, Birkhkäser Boston, Boston, MA, 1989,843–850.

[29]

F. Pacard, Partial regularity for weak solutions of a nonlinear elliptic equation, Manuscripta Math, 79 (1993), 161-172.  doi: 10.1007/BF02568335.

[30]

X. F. Ren and J. C. Wei, Counting peaks of solutions to some quasilinear elliptic equations with large exponents, J. Differ. Equations, 117 (1995), 28-55.  doi: 10.1006/jdeq.1995.1047.

[31]

J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math, 111 (1964), 247-302.  doi: 10.1007/BF02391014.

[32]

G. F. Wang and C. Xia, A characterization of the Wulff shape by an overdetermined anisotropic PDE, Arch. Rational Mech. Anal, 199 (2011), 99-115.  doi: 10.1007/s00205-010-0323-9.

[33]

G. F. Wang and C. Xia, Blow-up analysis of a Finsler-Liouville equation in two dimensions, J. Differ. Equations, 252 (2012), 1668-1700.  doi: 10.1016/j.jde.2011.08.001.

[34]

K. L. Wang, Partial regularity of stable solutions to the Emden equation, Calc. Var. Partial Differential Equations, 44 (2012), 601-610.  doi: 10.1007/s00526-011-0446-3.

[35]

K. L. Wang, Erratum to: Partial regularity of stable solutions to the Emden equation, Calc. Var. Partial Differential Equations, 47 (2013), 433-435.  doi: 10.1007/s00526-012-0565-5.

[36]

G. Wulff, Zur Frage der Geschwindigkeit des Wachstums und der Auflsung der Kristallflen, Z. Krist, 34 (1901), 449530.

show all references

References:
[1]

A. AlvinoV. FeroneG. Trombetti and P. L. Lions, Convex symmetrization and applications, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 14 (1997), 275-293.  doi: 10.1016/S0294-1449(97)80147-3.

[2]

M. Amar and G. Bellettini, A notion of total variation depending on a metric with discontinuous coefficients, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 11 (1994), 91-133.  doi: 10.1016/S0294-1449(16)30197-4.

[3]

W. W. Ao and W. Yang, On the classification of solutions of cosmic strings equation, Ann. Mat. Pura Appl., 198 (2019), 2183-2193.  doi: 10.1007/s10231-019-00861-w.

[4]

H. Brezis and F. Merle, Uniform estimates and blow-up behavior for solutions of $-\Delta u = V(x)e^{u}$ in two dimensions, Comm. Partial Differential Equations, 16 (1991), 1223-1253.  doi: 10.1080/03605309108820797.

[5]

L. CaffarelliN. Garofalo and F. Segala, A gradient bound for entire solutions of quasi-linear equations and its consequences, omm. Pure Appl. Math., 47 (1994), 1457-1473.  doi: 10.1002/cpa.3160471103.

[6]

A. Cianchi and P. Salani, Overdetermined anisotropic elliptic problems, Math. Ann., 345 (2009), 859-881.  doi: 10.1007/s00208-009-0386-9.

[7]

G. Ciraolo, A. Figalli and A. Roncoroni, Symmetry results for critical anisotropic p-Laplacian equations in convex cones, Geom. Funct. Anal., 30 (2020), 770–803, arXiv: 1906.00622v1. doi: 10.1007/s00039-020-00535-3.

[8]

M. CozziA. Farina and E. Valdinoci, Monotonicity formulae and classification results for singular, degenerate, anisotropic PDEs, Adv. Math., 293 (2016), 343-381.  doi: 10.1016/j.aim.2016.02.014.

[9]

M. CozziA. Farina and E. Valdinoci, Gradient bounds and rigidity results for singular, degenerate, anisotropic partial differential equations, Comm. Math. Phys., 331 (2014), 189-214.  doi: 10.1007/s00220-014-2107-9.

[10]

M. G. Crandall and P. H. Rabinowitz, Some continuation and variation methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rat. Mech. Anal., 58 (1975), 207-218.  doi: 10.1007/BF00280741.

[11]

F. Dalio, Partial regularity for stationary solutions to Liouville-type equation in dimension $3$, Comm. Partial Differential Equations, 33 (2008), 1890-1910.  doi: 10.1080/03605300802402625.

[12]

E. N. Dancer and A. Farina, On the classification of solutions of $-\Delta u = e^{u}$ on $\mathbb{R}^{N}$: stability outside a compact set and applications, Proc. Amer. Math. Soc, 137 (2009), 1333-1338.  doi: 10.1090/S0002-9939-08-09772-4.

[13]

E. N. Dancer, Finite Morse index solutions of exponential problems, Ann. Inst. H. Poincare Anal. Non Lineaire, 25 (2008), 173-179.  doi: 10.1016/j.anihpc.2006.12.001.

[14]

J. DavilaL. DupaigneK. L. Wang and J. C. Wei, A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem, Adv. Math., 258 (2014), 240-285.  doi: 10.1016/j.aim.2014.02.034.

[15]

P. Esposito, N. Ghoussoub and Y. Guo, Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS, Courant Lecture Notes in Mathematics, 20. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2010. doi: 10.1090/cln/020.

[16]

P. EspositoN. Ghoussoub and Y. Guo, Compactness along the branch of semistable and unstable solutions for an elliptic problem with a singular nonlinearity, Comm. Pure Appl. Math, 60 (2007), 1731-1768.  doi: 10.1002/cpa.20189.

[17]

A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $\mathbb{R}^{N}$, J. Math. Pures Appl, 87 (2007), 537-561.  doi: 10.1016/j.matpur.2007.03.001.

[18]

A. Farina, Stable solutions of $-\Delta u = e^{u}$ on $\mathbb{R}^{N}$, C. R. Math. Acad. Sci. Paris, 345 (2007), 63-66.  doi: 10.1016/j.crma.2007.05.021.

[19]

A. Farina and E. Valdinoci, Gradient bounds for anisotropic partial differential equations, Calc. Var. Partial Differential Equations, 49 (2014), 923-936.  doi: 10.1007/s00526-013-0605-9.

[20]

M. Fazly, Entire solutions of quasilinear symmetric systems, Indiana Univ. Math. J., 66 (2017), 361-400.  doi: 10.1512/iumj.2017.66.6017.

[21]

M. Fazly and H. Shahgholian, Monotonicity formulas for coupled elliptic gradient systems with applications, Adv. Nonlinear Anal, 9 (2020), 479-495.  doi: 10.1515/anona-2020-0010.

[22]

V. Ferone and B. Kawohl, Remarks on a Finsler-Laplacian, Proc. Amer. Math. Soc, 137 (2009), 247-253.  doi: 10.1090/S0002-9939-08-09554-3.

[23]

I. Fonseca and S. Müller, A uniqueness proof for the Wulff theorem, Proc. Roy. Soc. Edinburgh Sect. A, 119 (1991), 125-136.  doi: 10.1017/S0308210500028365.

[24]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1998.

[25]

Z. M. Guo and J. C. Wei, Hausdorff dimension of ruptures for solutions of a semilinear elliptic equation with singular nonlinearity, Manuscripta Math, 120 (2006), 193-209.  doi: 10.1007/s00229-006-0001-2.

[26]

F. H. Lin and X. P. Yang, Geometric Measure Theory: An Introduction. Advanced Mathematics (Beijing/Boston), vol. 1. Science Press/International Press, Boston/Beijing, 2002.

[27]

A. Mercaldo, M. Sano and F. Takahashi, Finsler Hardy inequalities, Math. Nachr., 293 (2020), 2370–2398, arXiv: 1806.04901v2. doi: 10.1002/mana.201900117.

[28]

L. Modica, Monotonicity of the energy for entire solutions of semilinear elliptic equations, in: Partial Differential Equations and the Calculus of Variations, vol. II, in: Progr. Nonlinear Differential Equations Appl., vol. 2, Birkhkäser Boston, Boston, MA, 1989,843–850.

[29]

F. Pacard, Partial regularity for weak solutions of a nonlinear elliptic equation, Manuscripta Math, 79 (1993), 161-172.  doi: 10.1007/BF02568335.

[30]

X. F. Ren and J. C. Wei, Counting peaks of solutions to some quasilinear elliptic equations with large exponents, J. Differ. Equations, 117 (1995), 28-55.  doi: 10.1006/jdeq.1995.1047.

[31]

J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math, 111 (1964), 247-302.  doi: 10.1007/BF02391014.

[32]

G. F. Wang and C. Xia, A characterization of the Wulff shape by an overdetermined anisotropic PDE, Arch. Rational Mech. Anal, 199 (2011), 99-115.  doi: 10.1007/s00205-010-0323-9.

[33]

G. F. Wang and C. Xia, Blow-up analysis of a Finsler-Liouville equation in two dimensions, J. Differ. Equations, 252 (2012), 1668-1700.  doi: 10.1016/j.jde.2011.08.001.

[34]

K. L. Wang, Partial regularity of stable solutions to the Emden equation, Calc. Var. Partial Differential Equations, 44 (2012), 601-610.  doi: 10.1007/s00526-011-0446-3.

[35]

K. L. Wang, Erratum to: Partial regularity of stable solutions to the Emden equation, Calc. Var. Partial Differential Equations, 47 (2013), 433-435.  doi: 10.1007/s00526-012-0565-5.

[36]

G. Wulff, Zur Frage der Geschwindigkeit des Wachstums und der Auflsung der Kristallflen, Z. Krist, 34 (1901), 449530.

[1]

Juan Dávila, Olivier Goubet. Partial regularity for a Liouville system. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2495-2503. doi: 10.3934/dcds.2014.34.2495

[2]

Ovidiu Savin. A Liouville theorem for solutions to the linearized Monge-Ampere equation. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 865-873. doi: 10.3934/dcds.2010.28.865

[3]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, 2021, 29 (5) : 2829-2839. doi: 10.3934/era.2021016

[4]

Carlos Matheus, Jacob Palis. An estimate on the Hausdorff dimension of stable sets of non-uniformly hyperbolic horseshoes. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 431-448. doi: 10.3934/dcds.2018020

[5]

Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747

[6]

Zongming Guo, Juncheng Wei. Liouville type results and regularity of the extremal solutions of biharmonic equation with negative exponents. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2561-2580. doi: 10.3934/dcds.2014.34.2561

[7]

Olivier Goubet. Regularity of extremal solutions of a Liouville system. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 339-345. doi: 10.3934/dcdss.2019023

[8]

Qiao Liu. Partial regularity and the Minkowski dimension of singular points for suitable weak solutions to the 3D simplified Ericksen–Leslie system. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4397-4419. doi: 10.3934/dcds.2021041

[9]

Alessio Figalli, Young-Heon Kim. Partial regularity of Brenier solutions of the Monge-Ampère equation. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 559-565. doi: 10.3934/dcds.2010.28.559

[10]

Genggeng Huang. A Liouville theorem of degenerate elliptic equation and its application. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4549-4566. doi: 10.3934/dcds.2013.33.4549

[11]

Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure and Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565

[12]

Phuong Le. Liouville theorems for stable weak solutions of elliptic problems involving Grushin operator. Communications on Pure and Applied Analysis, 2020, 19 (1) : 511-525. doi: 10.3934/cpaa.2020025

[13]

Hatem Hajlaoui, Abdellaziz Harrabi, Foued Mtiri. Liouville theorems for stable solutions of the weighted Lane-Emden system. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 265-279. doi: 10.3934/dcds.2017011

[14]

Foued Mtiri. Liouville type theorems for stable solutions of elliptic system involving the Grushin operator. Communications on Pure and Applied Analysis, 2022, 21 (2) : 541-553. doi: 10.3934/cpaa.2021187

[15]

Xiaohui Yu. Liouville type theorem for nonlinear elliptic equation with general nonlinearity. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4947-4966. doi: 10.3934/dcds.2014.34.4947

[16]

Xiaomei Chen, Xiaohui Yu. Liouville type theorem for Hartree-Fock Equation on half space. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2079-2100. doi: 10.3934/cpaa.2022050

[17]

Begoña Barrios, Leandro Del Pezzo, Jorge García-Melián, Alexander Quaas. A Liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5731-5746. doi: 10.3934/dcds.2017248

[18]

Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Juan L. G. Guirao, Y. S. Hamed. Link theorem and distributions of solutions to uncertain Liouville-Caputo difference equations. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 427-440. doi: 10.3934/dcdss.2021083

[19]

Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503

[20]

Tomás Sanz-Perela. Regularity of radial stable solutions to semilinear elliptic equations for the fractional Laplacian. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2547-2575. doi: 10.3934/cpaa.2018121

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (204)
  • HTML views (200)
  • Cited by (0)

Other articles
by authors

[Back to Top]